Evaluating elementary functions in a numerical coprocessor based on rational approximations

A different approach to hardware evaluation of elementary functions for high-precision floating-point numbers (in particular, the extended double precision format of the IEEE standard P754) is examined. The evaluation is based on rational approximations of the elementary functions, a method which is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1990-08, Vol.39 (8), p.1030-1037
Hauptverfasser: Koren, I., Zinaty, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1037
container_issue 8
container_start_page 1030
container_title IEEE transactions on computers
container_volume 39
creator Koren, I.
Zinaty, O.
description A different approach to hardware evaluation of elementary functions for high-precision floating-point numbers (in particular, the extended double precision format of the IEEE standard P754) is examined. The evaluation is based on rational approximations of the elementary functions, a method which is commonly used in scientific software packages. A hardware model is presented of a floating-point numeric coprocessor consisting of a fast adder and a fast multiplier, and the minimum hardware required for evaluation of the elementary functions is added to it. Next, rational approximations for evaluating the elementary functions and testing the accuracy of the results are derived. The calculation time of these approximations in the proposed numeric processor is then estimated. It is concluded that rational approximations can successfully complete with previously used methods when execution time and silicon area are considered.< >
doi_str_mv 10.1109/12.57042
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28698531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>57042</ieee_id><sourcerecordid>28698531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-ffe4cf6a26670bdb9bd85f757f3c08471f5185642a3f27aac44707de94f873e93</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK6CV285iZeuSZqP5ijL-gELXvTkIaTpRCJtuiat6L-3uxVPw_A8vDO8CF1SsqKU6FvKVkIRzo7QggqhCq2FPEYLQmhV6JKTU3SW8wchRDKiF-ht82Xb0Q4hvmNooYM42PSD_RjdEPqYcYjY4jh2kIKzLXb9LvUOcu4Trm2GBvcRJ7t3J2p3E_0O3WHP5-jE2zbDxd9cotf7zcv6sdg-Pzyt77aFY4oPhffAnZeWSalI3dS6birhlVC-dKTiinpBKyE5s6VnylrHuSKqAc19pUrQ5RJdz7nT8c8R8mC6kB20rY3Qj9mwSupKlHQSb2bRpT7nBN7s0vRs-jGUmH17hjJzaG9Sr2Y1AMC_NrNfzbRrlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28698531</pqid></control><display><type>article</type><title>Evaluating elementary functions in a numerical coprocessor based on rational approximations</title><source>IEEE Electronic Library (IEL)</source><creator>Koren, I. ; Zinaty, O.</creator><creatorcontrib>Koren, I. ; Zinaty, O.</creatorcontrib><description>A different approach to hardware evaluation of elementary functions for high-precision floating-point numbers (in particular, the extended double precision format of the IEEE standard P754) is examined. The evaluation is based on rational approximations of the elementary functions, a method which is commonly used in scientific software packages. A hardware model is presented of a floating-point numeric coprocessor consisting of a fast adder and a fast multiplier, and the minimum hardware required for evaluation of the elementary functions is added to it. Next, rational approximations for evaluating the elementary functions and testing the accuracy of the results are derived. The calculation time of these approximations in the proposed numeric processor is then estimated. It is concluded that rational approximations can successfully complete with previously used methods when execution time and silicon area are considered.&lt; &gt;</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/12.57042</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coprocessors ; Ear ; Equations ; Floating-point arithmetic ; Hardware ; Iterative methods ; Silicon ; Software packages ; Testing ; Very large scale integration</subject><ispartof>IEEE transactions on computers, 1990-08, Vol.39 (8), p.1030-1037</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-ffe4cf6a26670bdb9bd85f757f3c08471f5185642a3f27aac44707de94f873e93</citedby><cites>FETCH-LOGICAL-c274t-ffe4cf6a26670bdb9bd85f757f3c08471f5185642a3f27aac44707de94f873e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/57042$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/57042$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Koren, I.</creatorcontrib><creatorcontrib>Zinaty, O.</creatorcontrib><title>Evaluating elementary functions in a numerical coprocessor based on rational approximations</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>A different approach to hardware evaluation of elementary functions for high-precision floating-point numbers (in particular, the extended double precision format of the IEEE standard P754) is examined. The evaluation is based on rational approximations of the elementary functions, a method which is commonly used in scientific software packages. A hardware model is presented of a floating-point numeric coprocessor consisting of a fast adder and a fast multiplier, and the minimum hardware required for evaluation of the elementary functions is added to it. Next, rational approximations for evaluating the elementary functions and testing the accuracy of the results are derived. The calculation time of these approximations in the proposed numeric processor is then estimated. It is concluded that rational approximations can successfully complete with previously used methods when execution time and silicon area are considered.&lt; &gt;</description><subject>Coprocessors</subject><subject>Ear</subject><subject>Equations</subject><subject>Floating-point arithmetic</subject><subject>Hardware</subject><subject>Iterative methods</subject><subject>Silicon</subject><subject>Software packages</subject><subject>Testing</subject><subject>Very large scale integration</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK6CV285iZeuSZqP5ijL-gELXvTkIaTpRCJtuiat6L-3uxVPw_A8vDO8CF1SsqKU6FvKVkIRzo7QggqhCq2FPEYLQmhV6JKTU3SW8wchRDKiF-ht82Xb0Q4hvmNooYM42PSD_RjdEPqYcYjY4jh2kIKzLXb9LvUOcu4Trm2GBvcRJ7t3J2p3E_0O3WHP5-jE2zbDxd9cotf7zcv6sdg-Pzyt77aFY4oPhffAnZeWSalI3dS6birhlVC-dKTiinpBKyE5s6VnylrHuSKqAc19pUrQ5RJdz7nT8c8R8mC6kB20rY3Qj9mwSupKlHQSb2bRpT7nBN7s0vRs-jGUmH17hjJzaG9Sr2Y1AMC_NrNfzbRrlQ</recordid><startdate>19900801</startdate><enddate>19900801</enddate><creator>Koren, I.</creator><creator>Zinaty, O.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19900801</creationdate><title>Evaluating elementary functions in a numerical coprocessor based on rational approximations</title><author>Koren, I. ; Zinaty, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-ffe4cf6a26670bdb9bd85f757f3c08471f5185642a3f27aac44707de94f873e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Coprocessors</topic><topic>Ear</topic><topic>Equations</topic><topic>Floating-point arithmetic</topic><topic>Hardware</topic><topic>Iterative methods</topic><topic>Silicon</topic><topic>Software packages</topic><topic>Testing</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koren, I.</creatorcontrib><creatorcontrib>Zinaty, O.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koren, I.</au><au>Zinaty, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating elementary functions in a numerical coprocessor based on rational approximations</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>1990-08-01</date><risdate>1990</risdate><volume>39</volume><issue>8</issue><spage>1030</spage><epage>1037</epage><pages>1030-1037</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>A different approach to hardware evaluation of elementary functions for high-precision floating-point numbers (in particular, the extended double precision format of the IEEE standard P754) is examined. The evaluation is based on rational approximations of the elementary functions, a method which is commonly used in scientific software packages. A hardware model is presented of a floating-point numeric coprocessor consisting of a fast adder and a fast multiplier, and the minimum hardware required for evaluation of the elementary functions is added to it. Next, rational approximations for evaluating the elementary functions and testing the accuracy of the results are derived. The calculation time of these approximations in the proposed numeric processor is then estimated. It is concluded that rational approximations can successfully complete with previously used methods when execution time and silicon area are considered.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/12.57042</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 1990-08, Vol.39 (8), p.1030-1037
issn 0018-9340
1557-9956
language eng
recordid cdi_proquest_miscellaneous_28698531
source IEEE Electronic Library (IEL)
subjects Coprocessors
Ear
Equations
Floating-point arithmetic
Hardware
Iterative methods
Silicon
Software packages
Testing
Very large scale integration
title Evaluating elementary functions in a numerical coprocessor based on rational approximations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20elementary%20functions%20in%20a%20numerical%20coprocessor%20based%20on%20rational%20approximations&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Koren,%20I.&rft.date=1990-08-01&rft.volume=39&rft.issue=8&rft.spage=1030&rft.epage=1037&rft.pages=1030-1037&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/12.57042&rft_dat=%3Cproquest_RIE%3E28698531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28698531&rft_id=info:pmid/&rft_ieee_id=57042&rfr_iscdi=true