Zero-redundancy coding for unequal code symbol costs

Source distributions that can be encoded with zero redundancy for the case of unequal code symbol costs are examined. These distributions provide a natural generalization of the binary, equal costs case for which these distributions are the dyadic distributions. These zero redundancy codes have the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1992-09, Vol.38 (5), p.1583-1586
Hauptverfasser: Abrahams, J., Lipman, M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1586
container_issue 5
container_start_page 1583
container_title IEEE transactions on information theory
container_volume 38
creator Abrahams, J.
Lipman, M.J.
description Source distributions that can be encoded with zero redundancy for the case of unequal code symbol costs are examined. These distributions provide a natural generalization of the binary, equal costs case for which these distributions are the dyadic distributions. These zero redundancy codes have the property that the expected proportion of codeword symbols given by a particular letter is equal to an experimental function of the code letter cost. The converse is not true in general; however, partial converse results hold. Maximum-entropy zero-redundancy distributions are easily identified through their connection with unequal cost coding for uniform sources.< >
doi_str_mv 10.1109/18.149512
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28697441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>149512</ieee_id><sourcerecordid>28697441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-28feb1d4280721980056e6617b356ffbc26acec9849c2ca890780b15ac0334d13</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EEqUwsDJlQEgMKT7HduwRVXxJlVhgYbEc54yC0ri1myH_nkSpYLoPPfdI9xJyDXQFQPUDqBVwLYCdkAUIUeZaCn5KFpSCyjXn6pxcpPQzjnyEFoR_YQx5xLrvatu5IXOhbrrvzIeY9R3ue9tOK8zSsK3C1KdDuiRn3rYJr451ST6fnz7Wr_nm_eVt_bjJXUHlIWfKYwU1Z4qWDLSiVEiUEsqqENL7yjFpHTqtuHbMWaVpqWgFwjpaFLyGYknuZu8uhn2P6WC2TXLYtrbD0CfDlNQl5xN4P4MuhpQierOLzdbGwQA1Uy4GlJlzGdnbo9QmZ1sfx7eb9Hcg-BiM0CN2M2MNIv7rZscvbg1odA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28697441</pqid></control><display><type>article</type><title>Zero-redundancy coding for unequal code symbol costs</title><source>IEEE Electronic Library (IEL)</source><creator>Abrahams, J. ; Lipman, M.J.</creator><creatorcontrib>Abrahams, J. ; Lipman, M.J.</creatorcontrib><description>Source distributions that can be encoded with zero redundancy for the case of unequal code symbol costs are examined. These distributions provide a natural generalization of the binary, equal costs case for which these distributions are the dyadic distributions. These zero redundancy codes have the property that the expected proportion of codeword symbols given by a particular letter is equal to an experimental function of the code letter cost. The converse is not true in general; however, partial converse results hold. Maximum-entropy zero-redundancy distributions are easily identified through their connection with unequal cost coding for uniform sources.&lt; &gt;</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.149512</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Coding, codes ; Cost function ; Exact sciences and technology ; Information, signal and communications theory ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 1992-09, Vol.38 (5), p.1583-1586</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-28feb1d4280721980056e6617b356ffbc26acec9849c2ca890780b15ac0334d13</citedby><cites>FETCH-LOGICAL-c306t-28feb1d4280721980056e6617b356ffbc26acec9849c2ca890780b15ac0334d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/149512$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/149512$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5445159$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abrahams, J.</creatorcontrib><creatorcontrib>Lipman, M.J.</creatorcontrib><title>Zero-redundancy coding for unequal code symbol costs</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Source distributions that can be encoded with zero redundancy for the case of unequal code symbol costs are examined. These distributions provide a natural generalization of the binary, equal costs case for which these distributions are the dyadic distributions. These zero redundancy codes have the property that the expected proportion of codeword symbols given by a particular letter is equal to an experimental function of the code letter cost. The converse is not true in general; however, partial converse results hold. Maximum-entropy zero-redundancy distributions are easily identified through their connection with unequal cost coding for uniform sources.&lt; &gt;</description><subject>Applied sciences</subject><subject>Coding, codes</subject><subject>Cost function</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAQhi0EEqUwsDJlQEgMKT7HduwRVXxJlVhgYbEc54yC0ri1myH_nkSpYLoPPfdI9xJyDXQFQPUDqBVwLYCdkAUIUeZaCn5KFpSCyjXn6pxcpPQzjnyEFoR_YQx5xLrvatu5IXOhbrrvzIeY9R3ue9tOK8zSsK3C1KdDuiRn3rYJr451ST6fnz7Wr_nm_eVt_bjJXUHlIWfKYwU1Z4qWDLSiVEiUEsqqENL7yjFpHTqtuHbMWaVpqWgFwjpaFLyGYknuZu8uhn2P6WC2TXLYtrbD0CfDlNQl5xN4P4MuhpQierOLzdbGwQA1Uy4GlJlzGdnbo9QmZ1sfx7eb9Hcg-BiM0CN2M2MNIv7rZscvbg1odA</recordid><startdate>19920901</startdate><enddate>19920901</enddate><creator>Abrahams, J.</creator><creator>Lipman, M.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19920901</creationdate><title>Zero-redundancy coding for unequal code symbol costs</title><author>Abrahams, J. ; Lipman, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-28feb1d4280721980056e6617b356ffbc26acec9849c2ca890780b15ac0334d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Coding, codes</topic><topic>Cost function</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abrahams, J.</creatorcontrib><creatorcontrib>Lipman, M.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abrahams, J.</au><au>Lipman, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-redundancy coding for unequal code symbol costs</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1992-09-01</date><risdate>1992</risdate><volume>38</volume><issue>5</issue><spage>1583</spage><epage>1586</epage><pages>1583-1586</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Source distributions that can be encoded with zero redundancy for the case of unequal code symbol costs are examined. These distributions provide a natural generalization of the binary, equal costs case for which these distributions are the dyadic distributions. These zero redundancy codes have the property that the expected proportion of codeword symbols given by a particular letter is equal to an experimental function of the code letter cost. The converse is not true in general; however, partial converse results hold. Maximum-entropy zero-redundancy distributions are easily identified through their connection with unequal cost coding for uniform sources.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/18.149512</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1992-09, Vol.38 (5), p.1583-1586
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_28697441
source IEEE Electronic Library (IEL)
subjects Applied sciences
Coding, codes
Cost function
Exact sciences and technology
Information, signal and communications theory
Signal and communications theory
Telecommunications and information theory
title Zero-redundancy coding for unequal code symbol costs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-redundancy%20coding%20for%20unequal%20code%20symbol%20costs&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Abrahams,%20J.&rft.date=1992-09-01&rft.volume=38&rft.issue=5&rft.spage=1583&rft.epage=1586&rft.pages=1583-1586&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.149512&rft_dat=%3Cproquest_RIE%3E28697441%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28697441&rft_id=info:pmid/&rft_ieee_id=149512&rfr_iscdi=true