Zero-redundancy coding for unequal code symbol costs
Source distributions that can be encoded with zero redundancy for the case of unequal code symbol costs are examined. These distributions provide a natural generalization of the binary, equal costs case for which these distributions are the dyadic distributions. These zero redundancy codes have the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 1992-09, Vol.38 (5), p.1583-1586 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1586 |
---|---|
container_issue | 5 |
container_start_page | 1583 |
container_title | IEEE transactions on information theory |
container_volume | 38 |
creator | Abrahams, J. Lipman, M.J. |
description | Source distributions that can be encoded with zero redundancy for the case of unequal code symbol costs are examined. These distributions provide a natural generalization of the binary, equal costs case for which these distributions are the dyadic distributions. These zero redundancy codes have the property that the expected proportion of codeword symbols given by a particular letter is equal to an experimental function of the code letter cost. The converse is not true in general; however, partial converse results hold. Maximum-entropy zero-redundancy distributions are easily identified through their connection with unequal cost coding for uniform sources.< > |
doi_str_mv | 10.1109/18.149512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28697441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>149512</ieee_id><sourcerecordid>28697441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-28feb1d4280721980056e6617b356ffbc26acec9849c2ca890780b15ac0334d13</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EEqUwsDJlQEgMKT7HduwRVXxJlVhgYbEc54yC0ri1myH_nkSpYLoPPfdI9xJyDXQFQPUDqBVwLYCdkAUIUeZaCn5KFpSCyjXn6pxcpPQzjnyEFoR_YQx5xLrvatu5IXOhbrrvzIeY9R3ue9tOK8zSsK3C1KdDuiRn3rYJr451ST6fnz7Wr_nm_eVt_bjJXUHlIWfKYwU1Z4qWDLSiVEiUEsqqENL7yjFpHTqtuHbMWaVpqWgFwjpaFLyGYknuZu8uhn2P6WC2TXLYtrbD0CfDlNQl5xN4P4MuhpQierOLzdbGwQA1Uy4GlJlzGdnbo9QmZ1sfx7eb9Hcg-BiM0CN2M2MNIv7rZscvbg1odA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28697441</pqid></control><display><type>article</type><title>Zero-redundancy coding for unequal code symbol costs</title><source>IEEE Electronic Library (IEL)</source><creator>Abrahams, J. ; Lipman, M.J.</creator><creatorcontrib>Abrahams, J. ; Lipman, M.J.</creatorcontrib><description>Source distributions that can be encoded with zero redundancy for the case of unequal code symbol costs are examined. These distributions provide a natural generalization of the binary, equal costs case for which these distributions are the dyadic distributions. These zero redundancy codes have the property that the expected proportion of codeword symbols given by a particular letter is equal to an experimental function of the code letter cost. The converse is not true in general; however, partial converse results hold. Maximum-entropy zero-redundancy distributions are easily identified through their connection with unequal cost coding for uniform sources.< ></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.149512</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Coding, codes ; Cost function ; Exact sciences and technology ; Information, signal and communications theory ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 1992-09, Vol.38 (5), p.1583-1586</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-28feb1d4280721980056e6617b356ffbc26acec9849c2ca890780b15ac0334d13</citedby><cites>FETCH-LOGICAL-c306t-28feb1d4280721980056e6617b356ffbc26acec9849c2ca890780b15ac0334d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/149512$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/149512$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5445159$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abrahams, J.</creatorcontrib><creatorcontrib>Lipman, M.J.</creatorcontrib><title>Zero-redundancy coding for unequal code symbol costs</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Source distributions that can be encoded with zero redundancy for the case of unequal code symbol costs are examined. These distributions provide a natural generalization of the binary, equal costs case for which these distributions are the dyadic distributions. These zero redundancy codes have the property that the expected proportion of codeword symbols given by a particular letter is equal to an experimental function of the code letter cost. The converse is not true in general; however, partial converse results hold. Maximum-entropy zero-redundancy distributions are easily identified through their connection with unequal cost coding for uniform sources.< ></description><subject>Applied sciences</subject><subject>Coding, codes</subject><subject>Cost function</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAQhi0EEqUwsDJlQEgMKT7HduwRVXxJlVhgYbEc54yC0ri1myH_nkSpYLoPPfdI9xJyDXQFQPUDqBVwLYCdkAUIUeZaCn5KFpSCyjXn6pxcpPQzjnyEFoR_YQx5xLrvatu5IXOhbrrvzIeY9R3ue9tOK8zSsK3C1KdDuiRn3rYJr451ST6fnz7Wr_nm_eVt_bjJXUHlIWfKYwU1Z4qWDLSiVEiUEsqqENL7yjFpHTqtuHbMWaVpqWgFwjpaFLyGYknuZu8uhn2P6WC2TXLYtrbD0CfDlNQl5xN4P4MuhpQierOLzdbGwQA1Uy4GlJlzGdnbo9QmZ1sfx7eb9Hcg-BiM0CN2M2MNIv7rZscvbg1odA</recordid><startdate>19920901</startdate><enddate>19920901</enddate><creator>Abrahams, J.</creator><creator>Lipman, M.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19920901</creationdate><title>Zero-redundancy coding for unequal code symbol costs</title><author>Abrahams, J. ; Lipman, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-28feb1d4280721980056e6617b356ffbc26acec9849c2ca890780b15ac0334d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Coding, codes</topic><topic>Cost function</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abrahams, J.</creatorcontrib><creatorcontrib>Lipman, M.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abrahams, J.</au><au>Lipman, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-redundancy coding for unequal code symbol costs</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1992-09-01</date><risdate>1992</risdate><volume>38</volume><issue>5</issue><spage>1583</spage><epage>1586</epage><pages>1583-1586</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Source distributions that can be encoded with zero redundancy for the case of unequal code symbol costs are examined. These distributions provide a natural generalization of the binary, equal costs case for which these distributions are the dyadic distributions. These zero redundancy codes have the property that the expected proportion of codeword symbols given by a particular letter is equal to an experimental function of the code letter cost. The converse is not true in general; however, partial converse results hold. Maximum-entropy zero-redundancy distributions are easily identified through their connection with unequal cost coding for uniform sources.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/18.149512</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 1992-09, Vol.38 (5), p.1583-1586 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_miscellaneous_28697441 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Coding, codes Cost function Exact sciences and technology Information, signal and communications theory Signal and communications theory Telecommunications and information theory |
title | Zero-redundancy coding for unequal code symbol costs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-redundancy%20coding%20for%20unequal%20code%20symbol%20costs&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Abrahams,%20J.&rft.date=1992-09-01&rft.volume=38&rft.issue=5&rft.spage=1583&rft.epage=1586&rft.pages=1583-1586&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.149512&rft_dat=%3Cproquest_RIE%3E28697441%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28697441&rft_id=info:pmid/&rft_ieee_id=149512&rfr_iscdi=true |