Characterization of surface microstructure and properties of low-energy high-dose plasma immersion ion-implanted 304L austenitic stainless steel

Low-energy plasma immersion ion implantation (PIII) of nitrogen was carried out in pulses of 3.8-kHz frequency to modify the surface of AISI 304L stainless steel at a high dose of 0.7–2.1×10 23 ions/m 2 at −1 kV applied d.c. potential in the temperature range 300–380 °C. PIII seems to significantly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2005-12, Vol.200 (7), p.2049-2057
Hauptverfasser: Ram Mohan Rao, K., Mukherjee, S., Raole, P.M., Manna, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2057
container_issue 7
container_start_page 2049
container_title Surface & coatings technology
container_volume 200
creator Ram Mohan Rao, K.
Mukherjee, S.
Raole, P.M.
Manna, I.
description Low-energy plasma immersion ion implantation (PIII) of nitrogen was carried out in pulses of 3.8-kHz frequency to modify the surface of AISI 304L stainless steel at a high dose of 0.7–2.1×10 23 ions/m 2 at −1 kV applied d.c. potential in the temperature range 300–380 °C. PIII seems to significantly enhance the hardness up to a shallow depth from the surface but adversely affect the resistance to pitting corrosion. A detailed characterization of the surface microstructure, composition and chemical state of the constituents was carried out by normal incidence and glancing angle X-ray diffraction (XRD) and by X-ray photoelectron spectroscopy (XPS), respectively. XRD analysis revealed that the microstructural constituents were mostly austenite (γ), expanded austenite (γ N) and ɛ-nitride in varying proportion depending on the PIII parameters. On the other hand, XPS analysis showed that nitrogen was mostly present as Fe- or Cr-nitride. In particular, γ N phase seemed to be a mixed nitride of Fe and Cr. While significant increase in hardness could arise due to grain refinement of γ and γ N (
doi_str_mv 10.1016/j.surfcoat.2004.06.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28694550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897204004864</els_id><sourcerecordid>28694550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-31e3e0012d671a04136addd2a14ae07d20add0926f9ef034454074aea34a4b7a3</originalsourceid><addsrcrecordid>eNqFkcuO1DAQRSPESDQz_ALyBnYJ5diJkx2oxQBSS2xgbRV2ZdqtPBqXA5r5ivlkHPUgliwsv07d8vUtitcSKgmyfXeqeI2DWzBVNYCuoK1ANc-KnexMXyqlzfNiB3Vjyq439YviJfMJAKTp9a543B8xoksUwwOmsMxiGcSmh47EFFxcOMXVpTWSwNmLc1zOFFMg3sBx-V3STPHuXhzD3bH0C5M4j8gTijBNFHlTzKMMUz6eE3mhQB8ErpxoDik4wQnDPBJzXhGNN8XVgCPTq6f5uvh--_Hb_nN5-Prpy_7DoXTKqFQqSYqyidq3RiJoqVr03tcoNRIYX0PeQl-3Q08DKK0bDSZfodKofxhU18Xbi2529HMlTnYK7GjMr6RlZVt3ba-bBjLYXsDtLzjSYM8xTBjvrQS7BWBP9m8AdgvAQmtzALnwzVMHZIfjEHF2gf9VG63qrusz9_7CUbb7K1C07ALNjnyI5JL1S_hfqz-pd6OH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28694550</pqid></control><display><type>article</type><title>Characterization of surface microstructure and properties of low-energy high-dose plasma immersion ion-implanted 304L austenitic stainless steel</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ram Mohan Rao, K. ; Mukherjee, S. ; Raole, P.M. ; Manna, I.</creator><creatorcontrib>Ram Mohan Rao, K. ; Mukherjee, S. ; Raole, P.M. ; Manna, I.</creatorcontrib><description>Low-energy plasma immersion ion implantation (PIII) of nitrogen was carried out in pulses of 3.8-kHz frequency to modify the surface of AISI 304L stainless steel at a high dose of 0.7–2.1×10 23 ions/m 2 at −1 kV applied d.c. potential in the temperature range 300–380 °C. PIII seems to significantly enhance the hardness up to a shallow depth from the surface but adversely affect the resistance to pitting corrosion. A detailed characterization of the surface microstructure, composition and chemical state of the constituents was carried out by normal incidence and glancing angle X-ray diffraction (XRD) and by X-ray photoelectron spectroscopy (XPS), respectively. XRD analysis revealed that the microstructural constituents were mostly austenite (γ), expanded austenite (γ N) and ɛ-nitride in varying proportion depending on the PIII parameters. On the other hand, XPS analysis showed that nitrogen was mostly present as Fe- or Cr-nitride. In particular, γ N phase seemed to be a mixed nitride of Fe and Cr. While significant increase in hardness could arise due to grain refinement of γ and γ N (&lt;50 nm) and solid solution hardening due to nitrogen, the deterioration of corrosion resistance could be attributed to the evolution of a multiphase microstructure (γ, γ N and particularly ɛ N) from an essentially single-phase parent γ microstructure. Finally, a detailed analysis is presented to identify the optimum PIII condition that offers a compromise between increase in hardness and loss of pitting corrosion resistance.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2004.06.035</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Corrosion ; Corrosion environments ; Corrosion resistance ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Expanded austenite ; Hardness ; Materials science ; Metals. Metallurgy ; Nitrogen ; Other topics in materials science ; Physics ; Plasma immersion ion implantation (PIII)</subject><ispartof>Surface &amp; coatings technology, 2005-12, Vol.200 (7), p.2049-2057</ispartof><rights>2004 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-31e3e0012d671a04136addd2a14ae07d20add0926f9ef034454074aea34a4b7a3</citedby><cites>FETCH-LOGICAL-c373t-31e3e0012d671a04136addd2a14ae07d20add0926f9ef034454074aea34a4b7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2004.06.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17432889$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ram Mohan Rao, K.</creatorcontrib><creatorcontrib>Mukherjee, S.</creatorcontrib><creatorcontrib>Raole, P.M.</creatorcontrib><creatorcontrib>Manna, I.</creatorcontrib><title>Characterization of surface microstructure and properties of low-energy high-dose plasma immersion ion-implanted 304L austenitic stainless steel</title><title>Surface &amp; coatings technology</title><description>Low-energy plasma immersion ion implantation (PIII) of nitrogen was carried out in pulses of 3.8-kHz frequency to modify the surface of AISI 304L stainless steel at a high dose of 0.7–2.1×10 23 ions/m 2 at −1 kV applied d.c. potential in the temperature range 300–380 °C. PIII seems to significantly enhance the hardness up to a shallow depth from the surface but adversely affect the resistance to pitting corrosion. A detailed characterization of the surface microstructure, composition and chemical state of the constituents was carried out by normal incidence and glancing angle X-ray diffraction (XRD) and by X-ray photoelectron spectroscopy (XPS), respectively. XRD analysis revealed that the microstructural constituents were mostly austenite (γ), expanded austenite (γ N) and ɛ-nitride in varying proportion depending on the PIII parameters. On the other hand, XPS analysis showed that nitrogen was mostly present as Fe- or Cr-nitride. In particular, γ N phase seemed to be a mixed nitride of Fe and Cr. While significant increase in hardness could arise due to grain refinement of γ and γ N (&lt;50 nm) and solid solution hardening due to nitrogen, the deterioration of corrosion resistance could be attributed to the evolution of a multiphase microstructure (γ, γ N and particularly ɛ N) from an essentially single-phase parent γ microstructure. Finally, a detailed analysis is presented to identify the optimum PIII condition that offers a compromise between increase in hardness and loss of pitting corrosion resistance.</description><subject>Applied sciences</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Corrosion resistance</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Expanded austenite</subject><subject>Hardness</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Nitrogen</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Plasma immersion ion implantation (PIII)</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkcuO1DAQRSPESDQz_ALyBnYJ5diJkx2oxQBSS2xgbRV2ZdqtPBqXA5r5ivlkHPUgliwsv07d8vUtitcSKgmyfXeqeI2DWzBVNYCuoK1ANc-KnexMXyqlzfNiB3Vjyq439YviJfMJAKTp9a543B8xoksUwwOmsMxiGcSmh47EFFxcOMXVpTWSwNmLc1zOFFMg3sBx-V3STPHuXhzD3bH0C5M4j8gTijBNFHlTzKMMUz6eE3mhQB8ErpxoDik4wQnDPBJzXhGNN8XVgCPTq6f5uvh--_Hb_nN5-Prpy_7DoXTKqFQqSYqyidq3RiJoqVr03tcoNRIYX0PeQl-3Q08DKK0bDSZfodKofxhU18Xbi2529HMlTnYK7GjMr6RlZVt3ba-bBjLYXsDtLzjSYM8xTBjvrQS7BWBP9m8AdgvAQmtzALnwzVMHZIfjEHF2gf9VG63qrusz9_7CUbb7K1C07ALNjnyI5JL1S_hfqz-pd6OH</recordid><startdate>20051221</startdate><enddate>20051221</enddate><creator>Ram Mohan Rao, K.</creator><creator>Mukherjee, S.</creator><creator>Raole, P.M.</creator><creator>Manna, I.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20051221</creationdate><title>Characterization of surface microstructure and properties of low-energy high-dose plasma immersion ion-implanted 304L austenitic stainless steel</title><author>Ram Mohan Rao, K. ; Mukherjee, S. ; Raole, P.M. ; Manna, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-31e3e0012d671a04136addd2a14ae07d20add0926f9ef034454074aea34a4b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Corrosion resistance</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Expanded austenite</topic><topic>Hardness</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Nitrogen</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Plasma immersion ion implantation (PIII)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ram Mohan Rao, K.</creatorcontrib><creatorcontrib>Mukherjee, S.</creatorcontrib><creatorcontrib>Raole, P.M.</creatorcontrib><creatorcontrib>Manna, I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ram Mohan Rao, K.</au><au>Mukherjee, S.</au><au>Raole, P.M.</au><au>Manna, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of surface microstructure and properties of low-energy high-dose plasma immersion ion-implanted 304L austenitic stainless steel</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2005-12-21</date><risdate>2005</risdate><volume>200</volume><issue>7</issue><spage>2049</spage><epage>2057</epage><pages>2049-2057</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Low-energy plasma immersion ion implantation (PIII) of nitrogen was carried out in pulses of 3.8-kHz frequency to modify the surface of AISI 304L stainless steel at a high dose of 0.7–2.1×10 23 ions/m 2 at −1 kV applied d.c. potential in the temperature range 300–380 °C. PIII seems to significantly enhance the hardness up to a shallow depth from the surface but adversely affect the resistance to pitting corrosion. A detailed characterization of the surface microstructure, composition and chemical state of the constituents was carried out by normal incidence and glancing angle X-ray diffraction (XRD) and by X-ray photoelectron spectroscopy (XPS), respectively. XRD analysis revealed that the microstructural constituents were mostly austenite (γ), expanded austenite (γ N) and ɛ-nitride in varying proportion depending on the PIII parameters. On the other hand, XPS analysis showed that nitrogen was mostly present as Fe- or Cr-nitride. In particular, γ N phase seemed to be a mixed nitride of Fe and Cr. While significant increase in hardness could arise due to grain refinement of γ and γ N (&lt;50 nm) and solid solution hardening due to nitrogen, the deterioration of corrosion resistance could be attributed to the evolution of a multiphase microstructure (γ, γ N and particularly ɛ N) from an essentially single-phase parent γ microstructure. Finally, a detailed analysis is presented to identify the optimum PIII condition that offers a compromise between increase in hardness and loss of pitting corrosion resistance.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2004.06.035</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2005-12, Vol.200 (7), p.2049-2057
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_28694550
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Corrosion
Corrosion environments
Corrosion resistance
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Expanded austenite
Hardness
Materials science
Metals. Metallurgy
Nitrogen
Other topics in materials science
Physics
Plasma immersion ion implantation (PIII)
title Characterization of surface microstructure and properties of low-energy high-dose plasma immersion ion-implanted 304L austenitic stainless steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20surface%20microstructure%20and%20properties%20of%20low-energy%20high-dose%20plasma%20immersion%20ion-implanted%20304L%20austenitic%20stainless%20steel&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Ram%20Mohan%20Rao,%20K.&rft.date=2005-12-21&rft.volume=200&rft.issue=7&rft.spage=2049&rft.epage=2057&rft.pages=2049-2057&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2004.06.035&rft_dat=%3Cproquest_cross%3E28694550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28694550&rft_id=info:pmid/&rft_els_id=S0257897204004864&rfr_iscdi=true