Characterization of surface microstructure and properties of low-energy high-dose plasma immersion ion-implanted 304L austenitic stainless steel
Low-energy plasma immersion ion implantation (PIII) of nitrogen was carried out in pulses of 3.8-kHz frequency to modify the surface of AISI 304L stainless steel at a high dose of 0.7–2.1×10 23 ions/m 2 at −1 kV applied d.c. potential in the temperature range 300–380 °C. PIII seems to significantly...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2005-12, Vol.200 (7), p.2049-2057 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2057 |
---|---|
container_issue | 7 |
container_start_page | 2049 |
container_title | Surface & coatings technology |
container_volume | 200 |
creator | Ram Mohan Rao, K. Mukherjee, S. Raole, P.M. Manna, I. |
description | Low-energy plasma immersion ion implantation (PIII) of nitrogen was carried out in pulses of 3.8-kHz frequency to modify the surface of AISI 304L stainless steel at a high dose of 0.7–2.1×10
23 ions/m
2 at −1 kV applied d.c. potential in the temperature range 300–380 °C. PIII seems to significantly enhance the hardness up to a shallow depth from the surface but adversely affect the resistance to pitting corrosion. A detailed characterization of the surface microstructure, composition and chemical state of the constituents was carried out by normal incidence and glancing angle X-ray diffraction (XRD) and by X-ray photoelectron spectroscopy (XPS), respectively. XRD analysis revealed that the microstructural constituents were mostly austenite (γ), expanded austenite (γ
N) and ɛ-nitride in varying proportion depending on the PIII parameters. On the other hand, XPS analysis showed that nitrogen was mostly present as Fe- or Cr-nitride. In particular, γ
N phase seemed to be a mixed nitride of Fe and Cr. While significant increase in hardness could arise due to grain refinement of γ and γ
N ( |
doi_str_mv | 10.1016/j.surfcoat.2004.06.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28694550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897204004864</els_id><sourcerecordid>28694550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-31e3e0012d671a04136addd2a14ae07d20add0926f9ef034454074aea34a4b7a3</originalsourceid><addsrcrecordid>eNqFkcuO1DAQRSPESDQz_ALyBnYJ5diJkx2oxQBSS2xgbRV2ZdqtPBqXA5r5ivlkHPUgliwsv07d8vUtitcSKgmyfXeqeI2DWzBVNYCuoK1ANc-KnexMXyqlzfNiB3Vjyq439YviJfMJAKTp9a543B8xoksUwwOmsMxiGcSmh47EFFxcOMXVpTWSwNmLc1zOFFMg3sBx-V3STPHuXhzD3bH0C5M4j8gTijBNFHlTzKMMUz6eE3mhQB8ErpxoDik4wQnDPBJzXhGNN8XVgCPTq6f5uvh--_Hb_nN5-Prpy_7DoXTKqFQqSYqyidq3RiJoqVr03tcoNRIYX0PeQl-3Q08DKK0bDSZfodKofxhU18Xbi2529HMlTnYK7GjMr6RlZVt3ba-bBjLYXsDtLzjSYM8xTBjvrQS7BWBP9m8AdgvAQmtzALnwzVMHZIfjEHF2gf9VG63qrusz9_7CUbb7K1C07ALNjnyI5JL1S_hfqz-pd6OH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28694550</pqid></control><display><type>article</type><title>Characterization of surface microstructure and properties of low-energy high-dose plasma immersion ion-implanted 304L austenitic stainless steel</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ram Mohan Rao, K. ; Mukherjee, S. ; Raole, P.M. ; Manna, I.</creator><creatorcontrib>Ram Mohan Rao, K. ; Mukherjee, S. ; Raole, P.M. ; Manna, I.</creatorcontrib><description>Low-energy plasma immersion ion implantation (PIII) of nitrogen was carried out in pulses of 3.8-kHz frequency to modify the surface of AISI 304L stainless steel at a high dose of 0.7–2.1×10
23 ions/m
2 at −1 kV applied d.c. potential in the temperature range 300–380 °C. PIII seems to significantly enhance the hardness up to a shallow depth from the surface but adversely affect the resistance to pitting corrosion. A detailed characterization of the surface microstructure, composition and chemical state of the constituents was carried out by normal incidence and glancing angle X-ray diffraction (XRD) and by X-ray photoelectron spectroscopy (XPS), respectively. XRD analysis revealed that the microstructural constituents were mostly austenite (γ), expanded austenite (γ
N) and ɛ-nitride in varying proportion depending on the PIII parameters. On the other hand, XPS analysis showed that nitrogen was mostly present as Fe- or Cr-nitride. In particular, γ
N phase seemed to be a mixed nitride of Fe and Cr. While significant increase in hardness could arise due to grain refinement of γ and γ
N (<50 nm) and solid solution hardening due to nitrogen, the deterioration of corrosion resistance could be attributed to the evolution of a multiphase microstructure (γ, γ
N and particularly ɛ
N) from an essentially single-phase parent γ microstructure. Finally, a detailed analysis is presented to identify the optimum PIII condition that offers a compromise between increase in hardness and loss of pitting corrosion resistance.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2004.06.035</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Corrosion ; Corrosion environments ; Corrosion resistance ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Expanded austenite ; Hardness ; Materials science ; Metals. Metallurgy ; Nitrogen ; Other topics in materials science ; Physics ; Plasma immersion ion implantation (PIII)</subject><ispartof>Surface & coatings technology, 2005-12, Vol.200 (7), p.2049-2057</ispartof><rights>2004 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-31e3e0012d671a04136addd2a14ae07d20add0926f9ef034454074aea34a4b7a3</citedby><cites>FETCH-LOGICAL-c373t-31e3e0012d671a04136addd2a14ae07d20add0926f9ef034454074aea34a4b7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2004.06.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17432889$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ram Mohan Rao, K.</creatorcontrib><creatorcontrib>Mukherjee, S.</creatorcontrib><creatorcontrib>Raole, P.M.</creatorcontrib><creatorcontrib>Manna, I.</creatorcontrib><title>Characterization of surface microstructure and properties of low-energy high-dose plasma immersion ion-implanted 304L austenitic stainless steel</title><title>Surface & coatings technology</title><description>Low-energy plasma immersion ion implantation (PIII) of nitrogen was carried out in pulses of 3.8-kHz frequency to modify the surface of AISI 304L stainless steel at a high dose of 0.7–2.1×10
23 ions/m
2 at −1 kV applied d.c. potential in the temperature range 300–380 °C. PIII seems to significantly enhance the hardness up to a shallow depth from the surface but adversely affect the resistance to pitting corrosion. A detailed characterization of the surface microstructure, composition and chemical state of the constituents was carried out by normal incidence and glancing angle X-ray diffraction (XRD) and by X-ray photoelectron spectroscopy (XPS), respectively. XRD analysis revealed that the microstructural constituents were mostly austenite (γ), expanded austenite (γ
N) and ɛ-nitride in varying proportion depending on the PIII parameters. On the other hand, XPS analysis showed that nitrogen was mostly present as Fe- or Cr-nitride. In particular, γ
N phase seemed to be a mixed nitride of Fe and Cr. While significant increase in hardness could arise due to grain refinement of γ and γ
N (<50 nm) and solid solution hardening due to nitrogen, the deterioration of corrosion resistance could be attributed to the evolution of a multiphase microstructure (γ, γ
N and particularly ɛ
N) from an essentially single-phase parent γ microstructure. Finally, a detailed analysis is presented to identify the optimum PIII condition that offers a compromise between increase in hardness and loss of pitting corrosion resistance.</description><subject>Applied sciences</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Corrosion resistance</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Expanded austenite</subject><subject>Hardness</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Nitrogen</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Plasma immersion ion implantation (PIII)</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkcuO1DAQRSPESDQz_ALyBnYJ5diJkx2oxQBSS2xgbRV2ZdqtPBqXA5r5ivlkHPUgliwsv07d8vUtitcSKgmyfXeqeI2DWzBVNYCuoK1ANc-KnexMXyqlzfNiB3Vjyq439YviJfMJAKTp9a543B8xoksUwwOmsMxiGcSmh47EFFxcOMXVpTWSwNmLc1zOFFMg3sBx-V3STPHuXhzD3bH0C5M4j8gTijBNFHlTzKMMUz6eE3mhQB8ErpxoDik4wQnDPBJzXhGNN8XVgCPTq6f5uvh--_Hb_nN5-Prpy_7DoXTKqFQqSYqyidq3RiJoqVr03tcoNRIYX0PeQl-3Q08DKK0bDSZfodKofxhU18Xbi2529HMlTnYK7GjMr6RlZVt3ba-bBjLYXsDtLzjSYM8xTBjvrQS7BWBP9m8AdgvAQmtzALnwzVMHZIfjEHF2gf9VG63qrusz9_7CUbb7K1C07ALNjnyI5JL1S_hfqz-pd6OH</recordid><startdate>20051221</startdate><enddate>20051221</enddate><creator>Ram Mohan Rao, K.</creator><creator>Mukherjee, S.</creator><creator>Raole, P.M.</creator><creator>Manna, I.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20051221</creationdate><title>Characterization of surface microstructure and properties of low-energy high-dose plasma immersion ion-implanted 304L austenitic stainless steel</title><author>Ram Mohan Rao, K. ; Mukherjee, S. ; Raole, P.M. ; Manna, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-31e3e0012d671a04136addd2a14ae07d20add0926f9ef034454074aea34a4b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Corrosion resistance</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Expanded austenite</topic><topic>Hardness</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Nitrogen</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Plasma immersion ion implantation (PIII)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ram Mohan Rao, K.</creatorcontrib><creatorcontrib>Mukherjee, S.</creatorcontrib><creatorcontrib>Raole, P.M.</creatorcontrib><creatorcontrib>Manna, I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ram Mohan Rao, K.</au><au>Mukherjee, S.</au><au>Raole, P.M.</au><au>Manna, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of surface microstructure and properties of low-energy high-dose plasma immersion ion-implanted 304L austenitic stainless steel</atitle><jtitle>Surface & coatings technology</jtitle><date>2005-12-21</date><risdate>2005</risdate><volume>200</volume><issue>7</issue><spage>2049</spage><epage>2057</epage><pages>2049-2057</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Low-energy plasma immersion ion implantation (PIII) of nitrogen was carried out in pulses of 3.8-kHz frequency to modify the surface of AISI 304L stainless steel at a high dose of 0.7–2.1×10
23 ions/m
2 at −1 kV applied d.c. potential in the temperature range 300–380 °C. PIII seems to significantly enhance the hardness up to a shallow depth from the surface but adversely affect the resistance to pitting corrosion. A detailed characterization of the surface microstructure, composition and chemical state of the constituents was carried out by normal incidence and glancing angle X-ray diffraction (XRD) and by X-ray photoelectron spectroscopy (XPS), respectively. XRD analysis revealed that the microstructural constituents were mostly austenite (γ), expanded austenite (γ
N) and ɛ-nitride in varying proportion depending on the PIII parameters. On the other hand, XPS analysis showed that nitrogen was mostly present as Fe- or Cr-nitride. In particular, γ
N phase seemed to be a mixed nitride of Fe and Cr. While significant increase in hardness could arise due to grain refinement of γ and γ
N (<50 nm) and solid solution hardening due to nitrogen, the deterioration of corrosion resistance could be attributed to the evolution of a multiphase microstructure (γ, γ
N and particularly ɛ
N) from an essentially single-phase parent γ microstructure. Finally, a detailed analysis is presented to identify the optimum PIII condition that offers a compromise between increase in hardness and loss of pitting corrosion resistance.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2004.06.035</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2005-12, Vol.200 (7), p.2049-2057 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_miscellaneous_28694550 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Corrosion Corrosion environments Corrosion resistance Cross-disciplinary physics: materials science rheology Exact sciences and technology Expanded austenite Hardness Materials science Metals. Metallurgy Nitrogen Other topics in materials science Physics Plasma immersion ion implantation (PIII) |
title | Characterization of surface microstructure and properties of low-energy high-dose plasma immersion ion-implanted 304L austenitic stainless steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20surface%20microstructure%20and%20properties%20of%20low-energy%20high-dose%20plasma%20immersion%20ion-implanted%20304L%20austenitic%20stainless%20steel&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Ram%20Mohan%20Rao,%20K.&rft.date=2005-12-21&rft.volume=200&rft.issue=7&rft.spage=2049&rft.epage=2057&rft.pages=2049-2057&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2004.06.035&rft_dat=%3Cproquest_cross%3E28694550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28694550&rft_id=info:pmid/&rft_els_id=S0257897204004864&rfr_iscdi=true |