Growth Anisotropy and Morphology Evolution of Line Defects in Monolayer MoS2: Atomic‐Level Observation, Large‐Scale Statistics, and Mechanism Understanding

Understanding the growth behavior and morphology evolution of defects in 2D transition metal dichalcogenides is significant for the performance tuning of nanoelectronic devices. Here, the low‐voltage aberration‐corrected transmission electron microscopy with an in situ heating holder and a fast fram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-01, Vol.20 (4), p.e2303511-n/a
Hauptverfasser: Li, Shouheng, Lin, Jinguo, Chen, Yun, Luo, Zheng, Cheng, Haifeng, Liu, Feng, Zhang, Jin, Wang, Shanshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e2303511
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Li, Shouheng
Lin, Jinguo
Chen, Yun
Luo, Zheng
Cheng, Haifeng
Liu, Feng
Zhang, Jin
Wang, Shanshan
description Understanding the growth behavior and morphology evolution of defects in 2D transition metal dichalcogenides is significant for the performance tuning of nanoelectronic devices. Here, the low‐voltage aberration‐corrected transmission electron microscopy with an in situ heating holder and a fast frame rate camera to investigate the sulfur vacancy lines in monolayer MoS2 is applied. Vacancy concentration‐dependent growth anisotropy is discovered, displaying first lengthening and then broadening of line defects as the vacancy densifies. With the temperature increase from 20 °C to 800 °C, the defect morphology evolves from a dense triangular network to an ultralong linear structure due to the temperature‐sensitive vacancy migration process. Atomistic dynamics of line defect reconstruction on the millisecond time scale are also captured. Density functional theory calculations, Monte Carlo simulation, and configurational force analysis are implemented to understand the growth and reconstruction mechanisms at relevant time and length scales. Throughout the work, high‐resolution imaging is closely combined with quantitative analysis of images involving thousands of atoms so that the atomic‐level structure and the large‐area statistical rules are obtained simultaneously. The work provides new ideas for balancing the accuracy and universality of discoveries in the TEM study and will be helpful to the controlled sculpture of nanomaterials. The dynamic evolution process of sulfur vacancy lines under different heating temperatures is studied by low‐voltage, in situ scanning transmission electron microscopy (STEM) observations. The anisotropic growth of vacancy lines exhibits both vacancy concentration dependence and temperature dependence, which gives fundamental insights into the similarity between defect structure growth at the atomic scale and 2D material growth at the micrometer scale.
doi_str_mv 10.1002/smll.202303511
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2869220947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918062797</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3061-1a86445034846f77d0c8ea720e3185358fbed10d19ff000292c5cdb5f669a61b3</originalsourceid><addsrcrecordid>eNpdkbtu2zAUhoWiBZomXTsT6NIhTniRKLGbkTugIIObmaCpI5sBRaokbUNbH6FvkHfLk4SGCw-dzu07F5y_KL4RfEEwppdxsPaCYsowqwj5UJwQTtiMN1R8PPoEfy6-xPiCMSO0rE-K17vgd2mN5s5En4IfJ6Rchx59GNfe-tWEbrbebpLxDvketcYBuoYedIrIuMw5b9UEIXsL-hPNkx-Mfvvzt4UtWPS0jBC2at99jloVVpBLC60soEXK6ZiMjueHjaDXKh8xoGfXQYgpJ41bnRWfemUjfP1nT4vn25tfV_ez9unu4WrezkaGOZkR1fCyrDArm5L3dd1h3YCqKQZGmopVTb-EjuCOiL7H-VmC6kp3y6rnXChOluy0-HGYOwb_ewMxycFEDdYqB34TJW24oBSLss7o9__QF78JLl8nqSAN5rQWe0ocqJ2xMMkxmEGFSRIs92LJvVjyKJZcPLbtMWLvARSOHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918062797</pqid></control><display><type>article</type><title>Growth Anisotropy and Morphology Evolution of Line Defects in Monolayer MoS2: Atomic‐Level Observation, Large‐Scale Statistics, and Mechanism Understanding</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Shouheng ; Lin, Jinguo ; Chen, Yun ; Luo, Zheng ; Cheng, Haifeng ; Liu, Feng ; Zhang, Jin ; Wang, Shanshan</creator><creatorcontrib>Li, Shouheng ; Lin, Jinguo ; Chen, Yun ; Luo, Zheng ; Cheng, Haifeng ; Liu, Feng ; Zhang, Jin ; Wang, Shanshan</creatorcontrib><description>Understanding the growth behavior and morphology evolution of defects in 2D transition metal dichalcogenides is significant for the performance tuning of nanoelectronic devices. Here, the low‐voltage aberration‐corrected transmission electron microscopy with an in situ heating holder and a fast frame rate camera to investigate the sulfur vacancy lines in monolayer MoS2 is applied. Vacancy concentration‐dependent growth anisotropy is discovered, displaying first lengthening and then broadening of line defects as the vacancy densifies. With the temperature increase from 20 °C to 800 °C, the defect morphology evolves from a dense triangular network to an ultralong linear structure due to the temperature‐sensitive vacancy migration process. Atomistic dynamics of line defect reconstruction on the millisecond time scale are also captured. Density functional theory calculations, Monte Carlo simulation, and configurational force analysis are implemented to understand the growth and reconstruction mechanisms at relevant time and length scales. Throughout the work, high‐resolution imaging is closely combined with quantitative analysis of images involving thousands of atoms so that the atomic‐level structure and the large‐area statistical rules are obtained simultaneously. The work provides new ideas for balancing the accuracy and universality of discoveries in the TEM study and will be helpful to the controlled sculpture of nanomaterials. The dynamic evolution process of sulfur vacancy lines under different heating temperatures is studied by low‐voltage, in situ scanning transmission electron microscopy (STEM) observations. The anisotropic growth of vacancy lines exhibits both vacancy concentration dependence and temperature dependence, which gives fundamental insights into the similarity between defect structure growth at the atomic scale and 2D material growth at the micrometer scale.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202303511</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D materials ; AC‐transmission electron microscopy (TEM) ; Anisotropy ; Atomic structure ; Defects ; Density functional theory ; Dislocations ; Electrons ; Evolution ; growth anisotropy ; Image reconstruction ; line defects ; Molybdenum disulfide ; Monolayers ; Monte Carlo simulation ; Morphology ; MoS2 ; Nanoelectronics ; Nanomaterials ; Nanotechnology devices ; Statuary ; Transition metal compounds</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-01, Vol.20 (4), p.e2303511-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3750-6737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202303511$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202303511$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45552,45553</link.rule.ids></links><search><creatorcontrib>Li, Shouheng</creatorcontrib><creatorcontrib>Lin, Jinguo</creatorcontrib><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Luo, Zheng</creatorcontrib><creatorcontrib>Cheng, Haifeng</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Wang, Shanshan</creatorcontrib><title>Growth Anisotropy and Morphology Evolution of Line Defects in Monolayer MoS2: Atomic‐Level Observation, Large‐Scale Statistics, and Mechanism Understanding</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Understanding the growth behavior and morphology evolution of defects in 2D transition metal dichalcogenides is significant for the performance tuning of nanoelectronic devices. Here, the low‐voltage aberration‐corrected transmission electron microscopy with an in situ heating holder and a fast frame rate camera to investigate the sulfur vacancy lines in monolayer MoS2 is applied. Vacancy concentration‐dependent growth anisotropy is discovered, displaying first lengthening and then broadening of line defects as the vacancy densifies. With the temperature increase from 20 °C to 800 °C, the defect morphology evolves from a dense triangular network to an ultralong linear structure due to the temperature‐sensitive vacancy migration process. Atomistic dynamics of line defect reconstruction on the millisecond time scale are also captured. Density functional theory calculations, Monte Carlo simulation, and configurational force analysis are implemented to understand the growth and reconstruction mechanisms at relevant time and length scales. Throughout the work, high‐resolution imaging is closely combined with quantitative analysis of images involving thousands of atoms so that the atomic‐level structure and the large‐area statistical rules are obtained simultaneously. The work provides new ideas for balancing the accuracy and universality of discoveries in the TEM study and will be helpful to the controlled sculpture of nanomaterials. The dynamic evolution process of sulfur vacancy lines under different heating temperatures is studied by low‐voltage, in situ scanning transmission electron microscopy (STEM) observations. The anisotropic growth of vacancy lines exhibits both vacancy concentration dependence and temperature dependence, which gives fundamental insights into the similarity between defect structure growth at the atomic scale and 2D material growth at the micrometer scale.</description><subject>2D materials</subject><subject>AC‐transmission electron microscopy (TEM)</subject><subject>Anisotropy</subject><subject>Atomic structure</subject><subject>Defects</subject><subject>Density functional theory</subject><subject>Dislocations</subject><subject>Electrons</subject><subject>Evolution</subject><subject>growth anisotropy</subject><subject>Image reconstruction</subject><subject>line defects</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Monte Carlo simulation</subject><subject>Morphology</subject><subject>MoS2</subject><subject>Nanoelectronics</subject><subject>Nanomaterials</subject><subject>Nanotechnology devices</subject><subject>Statuary</subject><subject>Transition metal compounds</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkbtu2zAUhoWiBZomXTsT6NIhTniRKLGbkTugIIObmaCpI5sBRaokbUNbH6FvkHfLk4SGCw-dzu07F5y_KL4RfEEwppdxsPaCYsowqwj5UJwQTtiMN1R8PPoEfy6-xPiCMSO0rE-K17vgd2mN5s5En4IfJ6Rchx59GNfe-tWEbrbebpLxDvketcYBuoYedIrIuMw5b9UEIXsL-hPNkx-Mfvvzt4UtWPS0jBC2at99jloVVpBLC60soEXK6ZiMjueHjaDXKh8xoGfXQYgpJ41bnRWfemUjfP1nT4vn25tfV_ez9unu4WrezkaGOZkR1fCyrDArm5L3dd1h3YCqKQZGmopVTb-EjuCOiL7H-VmC6kp3y6rnXChOluy0-HGYOwb_ewMxycFEDdYqB34TJW24oBSLss7o9__QF78JLl8nqSAN5rQWe0ocqJ2xMMkxmEGFSRIs92LJvVjyKJZcPLbtMWLvARSOHg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Li, Shouheng</creator><creator>Lin, Jinguo</creator><creator>Chen, Yun</creator><creator>Luo, Zheng</creator><creator>Cheng, Haifeng</creator><creator>Liu, Feng</creator><creator>Zhang, Jin</creator><creator>Wang, Shanshan</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3750-6737</orcidid></search><sort><creationdate>20240101</creationdate><title>Growth Anisotropy and Morphology Evolution of Line Defects in Monolayer MoS2: Atomic‐Level Observation, Large‐Scale Statistics, and Mechanism Understanding</title><author>Li, Shouheng ; Lin, Jinguo ; Chen, Yun ; Luo, Zheng ; Cheng, Haifeng ; Liu, Feng ; Zhang, Jin ; Wang, Shanshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3061-1a86445034846f77d0c8ea720e3185358fbed10d19ff000292c5cdb5f669a61b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>AC‐transmission electron microscopy (TEM)</topic><topic>Anisotropy</topic><topic>Atomic structure</topic><topic>Defects</topic><topic>Density functional theory</topic><topic>Dislocations</topic><topic>Electrons</topic><topic>Evolution</topic><topic>growth anisotropy</topic><topic>Image reconstruction</topic><topic>line defects</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Monte Carlo simulation</topic><topic>Morphology</topic><topic>MoS2</topic><topic>Nanoelectronics</topic><topic>Nanomaterials</topic><topic>Nanotechnology devices</topic><topic>Statuary</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shouheng</creatorcontrib><creatorcontrib>Lin, Jinguo</creatorcontrib><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Luo, Zheng</creatorcontrib><creatorcontrib>Cheng, Haifeng</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Wang, Shanshan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shouheng</au><au>Lin, Jinguo</au><au>Chen, Yun</au><au>Luo, Zheng</au><au>Cheng, Haifeng</au><au>Liu, Feng</au><au>Zhang, Jin</au><au>Wang, Shanshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth Anisotropy and Morphology Evolution of Line Defects in Monolayer MoS2: Atomic‐Level Observation, Large‐Scale Statistics, and Mechanism Understanding</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>20</volume><issue>4</issue><spage>e2303511</spage><epage>n/a</epage><pages>e2303511-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Understanding the growth behavior and morphology evolution of defects in 2D transition metal dichalcogenides is significant for the performance tuning of nanoelectronic devices. Here, the low‐voltage aberration‐corrected transmission electron microscopy with an in situ heating holder and a fast frame rate camera to investigate the sulfur vacancy lines in monolayer MoS2 is applied. Vacancy concentration‐dependent growth anisotropy is discovered, displaying first lengthening and then broadening of line defects as the vacancy densifies. With the temperature increase from 20 °C to 800 °C, the defect morphology evolves from a dense triangular network to an ultralong linear structure due to the temperature‐sensitive vacancy migration process. Atomistic dynamics of line defect reconstruction on the millisecond time scale are also captured. Density functional theory calculations, Monte Carlo simulation, and configurational force analysis are implemented to understand the growth and reconstruction mechanisms at relevant time and length scales. Throughout the work, high‐resolution imaging is closely combined with quantitative analysis of images involving thousands of atoms so that the atomic‐level structure and the large‐area statistical rules are obtained simultaneously. The work provides new ideas for balancing the accuracy and universality of discoveries in the TEM study and will be helpful to the controlled sculpture of nanomaterials. The dynamic evolution process of sulfur vacancy lines under different heating temperatures is studied by low‐voltage, in situ scanning transmission electron microscopy (STEM) observations. The anisotropic growth of vacancy lines exhibits both vacancy concentration dependence and temperature dependence, which gives fundamental insights into the similarity between defect structure growth at the atomic scale and 2D material growth at the micrometer scale.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202303511</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3750-6737</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-01, Vol.20 (4), p.e2303511-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2869220947
source Wiley Online Library Journals Frontfile Complete
subjects 2D materials
AC‐transmission electron microscopy (TEM)
Anisotropy
Atomic structure
Defects
Density functional theory
Dislocations
Electrons
Evolution
growth anisotropy
Image reconstruction
line defects
Molybdenum disulfide
Monolayers
Monte Carlo simulation
Morphology
MoS2
Nanoelectronics
Nanomaterials
Nanotechnology devices
Statuary
Transition metal compounds
title Growth Anisotropy and Morphology Evolution of Line Defects in Monolayer MoS2: Atomic‐Level Observation, Large‐Scale Statistics, and Mechanism Understanding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20Anisotropy%20and%20Morphology%20Evolution%20of%20Line%20Defects%20in%20Monolayer%20MoS2:%20Atomic%E2%80%90Level%20Observation,%20Large%E2%80%90Scale%20Statistics,%20and%20Mechanism%20Understanding&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Li,%20Shouheng&rft.date=2024-01-01&rft.volume=20&rft.issue=4&rft.spage=e2303511&rft.epage=n/a&rft.pages=e2303511-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202303511&rft_dat=%3Cproquest_wiley%3E2918062797%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918062797&rft_id=info:pmid/&rfr_iscdi=true