Atomic and electronic structure of the Si(001)2 x 1-Li chemisorption system at 1.0 monolayer coverage

Systems involving the interaction of alkali metals with silicon surfaces have attracted attention in semiconductor surface science due to both fundamental interest and possible technological applications. Ab initio plane-wave pseudopotential density functional theory (DFT) calculations have been per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface science 2005-01, Vol.574 (2-3), p.233-243
Hauptverfasser: Shi, H Q, Radny, M W, Smith, P V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243
container_issue 2-3
container_start_page 233
container_title Surface science
container_volume 574
creator Shi, H Q
Radny, M W
Smith, P V
description Systems involving the interaction of alkali metals with silicon surfaces have attracted attention in semiconductor surface science due to both fundamental interest and possible technological applications. Ab initio plane-wave pseudopotential density functional theory (DFT) calculations have been performed to determine the atomic and electronic structure of the Si(001)2 x 1-Li adsorption system at 1.0 monolayer (ML) coverage. Chemisorption of the lithium atoms is found to result in a minimum energy configuration characterized by symmetric Si dimers in agreement with the results of high-resolution core-level photoelectron spectroscopy. The transition from the asymmetric Si dimers of the clean Si(001) surface to the symmetric dimers of the Li chemisorbed surface is due to charge transfer from the Li adatoms to the substrate. The dispersion of the occupied electronic surface state bands is found to be in good agreement with the angle-resolved photoemission data. The nature of the lowest energy unoccupied surface state band suggests that silicide formation may occur at coverages greater than 1.0 ML.
doi_str_mv 10.1016/j.susc.2004.10.046
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28690359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28690359</sourcerecordid><originalsourceid>FETCH-LOGICAL-p116t-73af8f891183740cf8e0a26d02c985deb3f2616446645903f664a29e064306303</originalsourceid><addsrcrecordid>eNotjk1LAzEYhHNQsFb_gKf3JHrY9c3HpsmxFL-g4EE9l5i-sVt2NzXJiv33LuhcHmZghmHsimPNkeu7fZ3H7GuBqKagRqVP2AxR2kqjMGfsPOc9TlK2mTFalti3HtywBerIlxSHyeaSRl_GRBADlB3Ba3uDyG8F_ACv1i34HfVtjulQ2jhAPuZCPbgCvEbo4xA7d6QEPn5Tcp90wU6D6zJd_nPO3h_u31ZP1frl8Xm1XFcHznWpFtIFE4zl3MiFQh8MoRN6i8Jb02zpQwahuVZKa9VYlGGiE5ZQK4laopyz67_dQ4pfI-WymU566jo3UBzzRhg91RorfwEZGVZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28690359</pqid></control><display><type>article</type><title>Atomic and electronic structure of the Si(001)2 x 1-Li chemisorption system at 1.0 monolayer coverage</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Shi, H Q ; Radny, M W ; Smith, P V</creator><creatorcontrib>Shi, H Q ; Radny, M W ; Smith, P V</creatorcontrib><description>Systems involving the interaction of alkali metals with silicon surfaces have attracted attention in semiconductor surface science due to both fundamental interest and possible technological applications. Ab initio plane-wave pseudopotential density functional theory (DFT) calculations have been performed to determine the atomic and electronic structure of the Si(001)2 x 1-Li adsorption system at 1.0 monolayer (ML) coverage. Chemisorption of the lithium atoms is found to result in a minimum energy configuration characterized by symmetric Si dimers in agreement with the results of high-resolution core-level photoelectron spectroscopy. The transition from the asymmetric Si dimers of the clean Si(001) surface to the symmetric dimers of the Li chemisorbed surface is due to charge transfer from the Li adatoms to the substrate. The dispersion of the occupied electronic surface state bands is found to be in good agreement with the angle-resolved photoemission data. The nature of the lowest energy unoccupied surface state band suggests that silicide formation may occur at coverages greater than 1.0 ML.</description><identifier>ISSN: 0039-6028</identifier><identifier>DOI: 10.1016/j.susc.2004.10.046</identifier><language>eng</language><ispartof>Surface science, 2005-01, Vol.574 (2-3), p.233-243</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shi, H Q</creatorcontrib><creatorcontrib>Radny, M W</creatorcontrib><creatorcontrib>Smith, P V</creatorcontrib><title>Atomic and electronic structure of the Si(001)2 x 1-Li chemisorption system at 1.0 monolayer coverage</title><title>Surface science</title><description>Systems involving the interaction of alkali metals with silicon surfaces have attracted attention in semiconductor surface science due to both fundamental interest and possible technological applications. Ab initio plane-wave pseudopotential density functional theory (DFT) calculations have been performed to determine the atomic and electronic structure of the Si(001)2 x 1-Li adsorption system at 1.0 monolayer (ML) coverage. Chemisorption of the lithium atoms is found to result in a minimum energy configuration characterized by symmetric Si dimers in agreement with the results of high-resolution core-level photoelectron spectroscopy. The transition from the asymmetric Si dimers of the clean Si(001) surface to the symmetric dimers of the Li chemisorbed surface is due to charge transfer from the Li adatoms to the substrate. The dispersion of the occupied electronic surface state bands is found to be in good agreement with the angle-resolved photoemission data. The nature of the lowest energy unoccupied surface state band suggests that silicide formation may occur at coverages greater than 1.0 ML.</description><issn>0039-6028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotjk1LAzEYhHNQsFb_gKf3JHrY9c3HpsmxFL-g4EE9l5i-sVt2NzXJiv33LuhcHmZghmHsimPNkeu7fZ3H7GuBqKagRqVP2AxR2kqjMGfsPOc9TlK2mTFalti3HtywBerIlxSHyeaSRl_GRBADlB3Ba3uDyG8F_ACv1i34HfVtjulQ2jhAPuZCPbgCvEbo4xA7d6QEPn5Tcp90wU6D6zJd_nPO3h_u31ZP1frl8Xm1XFcHznWpFtIFE4zl3MiFQh8MoRN6i8Jb02zpQwahuVZKa9VYlGGiE5ZQK4laopyz67_dQ4pfI-WymU566jo3UBzzRhg91RorfwEZGVZw</recordid><startdate>20050110</startdate><enddate>20050110</enddate><creator>Shi, H Q</creator><creator>Radny, M W</creator><creator>Smith, P V</creator><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20050110</creationdate><title>Atomic and electronic structure of the Si(001)2 x 1-Li chemisorption system at 1.0 monolayer coverage</title><author>Shi, H Q ; Radny, M W ; Smith, P V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p116t-73af8f891183740cf8e0a26d02c985deb3f2616446645903f664a29e064306303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, H Q</creatorcontrib><creatorcontrib>Radny, M W</creatorcontrib><creatorcontrib>Smith, P V</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, H Q</au><au>Radny, M W</au><au>Smith, P V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic and electronic structure of the Si(001)2 x 1-Li chemisorption system at 1.0 monolayer coverage</atitle><jtitle>Surface science</jtitle><date>2005-01-10</date><risdate>2005</risdate><volume>574</volume><issue>2-3</issue><spage>233</spage><epage>243</epage><pages>233-243</pages><issn>0039-6028</issn><abstract>Systems involving the interaction of alkali metals with silicon surfaces have attracted attention in semiconductor surface science due to both fundamental interest and possible technological applications. Ab initio plane-wave pseudopotential density functional theory (DFT) calculations have been performed to determine the atomic and electronic structure of the Si(001)2 x 1-Li adsorption system at 1.0 monolayer (ML) coverage. Chemisorption of the lithium atoms is found to result in a minimum energy configuration characterized by symmetric Si dimers in agreement with the results of high-resolution core-level photoelectron spectroscopy. The transition from the asymmetric Si dimers of the clean Si(001) surface to the symmetric dimers of the Li chemisorbed surface is due to charge transfer from the Li adatoms to the substrate. The dispersion of the occupied electronic surface state bands is found to be in good agreement with the angle-resolved photoemission data. The nature of the lowest energy unoccupied surface state band suggests that silicide formation may occur at coverages greater than 1.0 ML.</abstract><doi>10.1016/j.susc.2004.10.046</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 2005-01, Vol.574 (2-3), p.233-243
issn 0039-6028
language eng
recordid cdi_proquest_miscellaneous_28690359
source ScienceDirect Journals (5 years ago - present)
title Atomic and electronic structure of the Si(001)2 x 1-Li chemisorption system at 1.0 monolayer coverage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20and%20electronic%20structure%20of%20the%20Si(001)2%20x%201-Li%20chemisorption%20system%20at%201.0%20monolayer%20coverage&rft.jtitle=Surface%20science&rft.au=Shi,%20H%20Q&rft.date=2005-01-10&rft.volume=574&rft.issue=2-3&rft.spage=233&rft.epage=243&rft.pages=233-243&rft.issn=0039-6028&rft_id=info:doi/10.1016/j.susc.2004.10.046&rft_dat=%3Cproquest%3E28690359%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28690359&rft_id=info:pmid/&rfr_iscdi=true