Computational study on the mechanisms of inhibition of SARS-CoV-2 Mpro by aldehyde warheads based on DFT

SARS-CoV-2 main protease, Mpro, plays a crucial role in the virus replication cycle, making it an important target for antiviral research. In this study, a simplified model obtained through truncation is used to explore the reaction mechanism of aldehyde warhead compounds inhibiting Mpro at the leve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-10, Vol.25 (38), p.26308-26315
Hauptverfasser: Yang, Yongsheng, Zhang, Chenghua, Qian, Xingcan, Jia, Feiyun, Liang, Shiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26315
container_issue 38
container_start_page 26308
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Yang, Yongsheng
Zhang, Chenghua
Qian, Xingcan
Jia, Feiyun
Liang, Shiwei
description SARS-CoV-2 main protease, Mpro, plays a crucial role in the virus replication cycle, making it an important target for antiviral research. In this study, a simplified model obtained through truncation is used to explore the reaction mechanism of aldehyde warhead compounds inhibiting Mpro at the level of density functional theory. According to the calculation results, proton transfer (P_T)-nucleophilic attack (N_A) is the rate-determining step in the entire reaction pathway. The water molecule that plays a catalytic role occupies the oxyanion hole, which is unfavorable for the aldehyde warhead to approach the Cys145 SH. Through a hypothetical study of substituting the main chain NH with methylene, it is further confirmed that the P_T-N_A is a proton transfer-dominated process accompanied by a nucleophilic attack reaction. In this process, the oxyanion hole serves only to stabilize the aldehyde oxygen anion and therefore does not have a significant impact on the activation free energy barrier of the step. Our research results provide a unique perspective for understanding the covalent inhibition reaction of the Mpro active site. This study also offers theoretical guidance for the design of new Mpro covalent inhibitors.
doi_str_mv 10.1039/d3cp03394e
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2868673148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872138285</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-2cd6a2f9ecb8cbb73e5cff1db08b6540d1cd759fdce27ec2580e6a2cc297de0e3</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRsFY3_oIBN26i80gyk2WJVoWKYKvbMo8bkpJkYmZCyb83QXHh6p4L3zkcDkLXlNxRwrN7y01HOM9iOEELGqc8yoiMT_-0SM_RhfcHQghNKF-gMndNNwQVKteqGvsw2BG7FocScAOmVG3lG49dgau2rHQ1c_O3Xb1vo9x9Rgy_dr3DesSqtlCOFvBR9SUo67FWHuyc9rDeXaKzQtUern7vEn2sH3f5c7R5e3rJV5uomyqGiBmbKlZkYLQ0WgsOiSkKajWROk1iYqmxIskKa4AJMCyRBCaDMSwTFgjwJbr9yZ1afQ3gw76pvIG6Vi24we-ZTGUqOI3lhN78Qw9u6KcZZkowyiWTCf8GJg5nYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872138285</pqid></control><display><type>article</type><title>Computational study on the mechanisms of inhibition of SARS-CoV-2 Mpro by aldehyde warheads based on DFT</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yang, Yongsheng ; Zhang, Chenghua ; Qian, Xingcan ; Jia, Feiyun ; Liang, Shiwei</creator><creatorcontrib>Yang, Yongsheng ; Zhang, Chenghua ; Qian, Xingcan ; Jia, Feiyun ; Liang, Shiwei</creatorcontrib><description>SARS-CoV-2 main protease, Mpro, plays a crucial role in the virus replication cycle, making it an important target for antiviral research. In this study, a simplified model obtained through truncation is used to explore the reaction mechanism of aldehyde warhead compounds inhibiting Mpro at the level of density functional theory. According to the calculation results, proton transfer (P_T)-nucleophilic attack (N_A) is the rate-determining step in the entire reaction pathway. The water molecule that plays a catalytic role occupies the oxyanion hole, which is unfavorable for the aldehyde warhead to approach the Cys145 SH. Through a hypothetical study of substituting the main chain NH with methylene, it is further confirmed that the P_T-N_A is a proton transfer-dominated process accompanied by a nucleophilic attack reaction. In this process, the oxyanion hole serves only to stabilize the aldehyde oxygen anion and therefore does not have a significant impact on the activation free energy barrier of the step. Our research results provide a unique perspective for understanding the covalent inhibition reaction of the Mpro active site. This study also offers theoretical guidance for the design of new Mpro covalent inhibitors.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp03394e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aldehydes ; Density functional theory ; Free energy ; Protons ; Reaction mechanisms ; Severe acute respiratory syndrome coronavirus 2 ; Warheads</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-10, Vol.25 (38), p.26308-26315</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, Yongsheng</creatorcontrib><creatorcontrib>Zhang, Chenghua</creatorcontrib><creatorcontrib>Qian, Xingcan</creatorcontrib><creatorcontrib>Jia, Feiyun</creatorcontrib><creatorcontrib>Liang, Shiwei</creatorcontrib><title>Computational study on the mechanisms of inhibition of SARS-CoV-2 Mpro by aldehyde warheads based on DFT</title><title>Physical chemistry chemical physics : PCCP</title><description>SARS-CoV-2 main protease, Mpro, plays a crucial role in the virus replication cycle, making it an important target for antiviral research. In this study, a simplified model obtained through truncation is used to explore the reaction mechanism of aldehyde warhead compounds inhibiting Mpro at the level of density functional theory. According to the calculation results, proton transfer (P_T)-nucleophilic attack (N_A) is the rate-determining step in the entire reaction pathway. The water molecule that plays a catalytic role occupies the oxyanion hole, which is unfavorable for the aldehyde warhead to approach the Cys145 SH. Through a hypothetical study of substituting the main chain NH with methylene, it is further confirmed that the P_T-N_A is a proton transfer-dominated process accompanied by a nucleophilic attack reaction. In this process, the oxyanion hole serves only to stabilize the aldehyde oxygen anion and therefore does not have a significant impact on the activation free energy barrier of the step. Our research results provide a unique perspective for understanding the covalent inhibition reaction of the Mpro active site. This study also offers theoretical guidance for the design of new Mpro covalent inhibitors.</description><subject>Aldehydes</subject><subject>Density functional theory</subject><subject>Free energy</subject><subject>Protons</subject><subject>Reaction mechanisms</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Warheads</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AUhQdRsFY3_oIBN26i80gyk2WJVoWKYKvbMo8bkpJkYmZCyb83QXHh6p4L3zkcDkLXlNxRwrN7y01HOM9iOEELGqc8yoiMT_-0SM_RhfcHQghNKF-gMndNNwQVKteqGvsw2BG7FocScAOmVG3lG49dgau2rHQ1c_O3Xb1vo9x9Rgy_dr3DesSqtlCOFvBR9SUo67FWHuyc9rDeXaKzQtUern7vEn2sH3f5c7R5e3rJV5uomyqGiBmbKlZkYLQ0WgsOiSkKajWROk1iYqmxIskKa4AJMCyRBCaDMSwTFgjwJbr9yZ1afQ3gw76pvIG6Vi24we-ZTGUqOI3lhN78Qw9u6KcZZkowyiWTCf8GJg5nYg</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Yang, Yongsheng</creator><creator>Zhang, Chenghua</creator><creator>Qian, Xingcan</creator><creator>Jia, Feiyun</creator><creator>Liang, Shiwei</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20231004</creationdate><title>Computational study on the mechanisms of inhibition of SARS-CoV-2 Mpro by aldehyde warheads based on DFT</title><author>Yang, Yongsheng ; Zhang, Chenghua ; Qian, Xingcan ; Jia, Feiyun ; Liang, Shiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-2cd6a2f9ecb8cbb73e5cff1db08b6540d1cd759fdce27ec2580e6a2cc297de0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aldehydes</topic><topic>Density functional theory</topic><topic>Free energy</topic><topic>Protons</topic><topic>Reaction mechanisms</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Warheads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yongsheng</creatorcontrib><creatorcontrib>Zhang, Chenghua</creatorcontrib><creatorcontrib>Qian, Xingcan</creatorcontrib><creatorcontrib>Jia, Feiyun</creatorcontrib><creatorcontrib>Liang, Shiwei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yongsheng</au><au>Zhang, Chenghua</au><au>Qian, Xingcan</au><au>Jia, Feiyun</au><au>Liang, Shiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational study on the mechanisms of inhibition of SARS-CoV-2 Mpro by aldehyde warheads based on DFT</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-10-04</date><risdate>2023</risdate><volume>25</volume><issue>38</issue><spage>26308</spage><epage>26315</epage><pages>26308-26315</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>SARS-CoV-2 main protease, Mpro, plays a crucial role in the virus replication cycle, making it an important target for antiviral research. In this study, a simplified model obtained through truncation is used to explore the reaction mechanism of aldehyde warhead compounds inhibiting Mpro at the level of density functional theory. According to the calculation results, proton transfer (P_T)-nucleophilic attack (N_A) is the rate-determining step in the entire reaction pathway. The water molecule that plays a catalytic role occupies the oxyanion hole, which is unfavorable for the aldehyde warhead to approach the Cys145 SH. Through a hypothetical study of substituting the main chain NH with methylene, it is further confirmed that the P_T-N_A is a proton transfer-dominated process accompanied by a nucleophilic attack reaction. In this process, the oxyanion hole serves only to stabilize the aldehyde oxygen anion and therefore does not have a significant impact on the activation free energy barrier of the step. Our research results provide a unique perspective for understanding the covalent inhibition reaction of the Mpro active site. This study also offers theoretical guidance for the design of new Mpro covalent inhibitors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp03394e</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-10, Vol.25 (38), p.26308-26315
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2868673148
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Aldehydes
Density functional theory
Free energy
Protons
Reaction mechanisms
Severe acute respiratory syndrome coronavirus 2
Warheads
title Computational study on the mechanisms of inhibition of SARS-CoV-2 Mpro by aldehyde warheads based on DFT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20study%20on%20the%20mechanisms%20of%20inhibition%20of%20SARS-CoV-2%20Mpro%20by%20aldehyde%20warheads%20based%20on%20DFT&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Yang,%20Yongsheng&rft.date=2023-10-04&rft.volume=25&rft.issue=38&rft.spage=26308&rft.epage=26315&rft.pages=26308-26315&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp03394e&rft_dat=%3Cproquest%3E2872138285%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872138285&rft_id=info:pmid/&rfr_iscdi=true