Computational study on the mechanisms of inhibition of SARS-CoV-2 Mpro by aldehyde warheads based on DFT
SARS-CoV-2 main protease, Mpro, plays a crucial role in the virus replication cycle, making it an important target for antiviral research. In this study, a simplified model obtained through truncation is used to explore the reaction mechanism of aldehyde warhead compounds inhibiting Mpro at the leve...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-10, Vol.25 (38), p.26308-26315 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26315 |
---|---|
container_issue | 38 |
container_start_page | 26308 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Yang, Yongsheng Zhang, Chenghua Qian, Xingcan Jia, Feiyun Liang, Shiwei |
description | SARS-CoV-2 main protease, Mpro, plays a crucial role in the virus replication cycle, making it an important target for antiviral research. In this study, a simplified model obtained through truncation is used to explore the reaction mechanism of aldehyde warhead compounds inhibiting Mpro at the level of density functional theory. According to the calculation results, proton transfer (P_T)-nucleophilic attack (N_A) is the rate-determining step in the entire reaction pathway. The water molecule that plays a catalytic role occupies the oxyanion hole, which is unfavorable for the aldehyde warhead to approach the Cys145 SH. Through a hypothetical study of substituting the main chain NH with methylene, it is further confirmed that the P_T-N_A is a proton transfer-dominated process accompanied by a nucleophilic attack reaction. In this process, the oxyanion hole serves only to stabilize the aldehyde oxygen anion and therefore does not have a significant impact on the activation free energy barrier of the step. Our research results provide a unique perspective for understanding the covalent inhibition reaction of the Mpro active site. This study also offers theoretical guidance for the design of new Mpro covalent inhibitors. |
doi_str_mv | 10.1039/d3cp03394e |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2868673148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872138285</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-2cd6a2f9ecb8cbb73e5cff1db08b6540d1cd759fdce27ec2580e6a2cc297de0e3</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRsFY3_oIBN26i80gyk2WJVoWKYKvbMo8bkpJkYmZCyb83QXHh6p4L3zkcDkLXlNxRwrN7y01HOM9iOEELGqc8yoiMT_-0SM_RhfcHQghNKF-gMndNNwQVKteqGvsw2BG7FocScAOmVG3lG49dgau2rHQ1c_O3Xb1vo9x9Rgy_dr3DesSqtlCOFvBR9SUo67FWHuyc9rDeXaKzQtUern7vEn2sH3f5c7R5e3rJV5uomyqGiBmbKlZkYLQ0WgsOiSkKajWROk1iYqmxIskKa4AJMCyRBCaDMSwTFgjwJbr9yZ1afQ3gw76pvIG6Vi24we-ZTGUqOI3lhN78Qw9u6KcZZkowyiWTCf8GJg5nYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872138285</pqid></control><display><type>article</type><title>Computational study on the mechanisms of inhibition of SARS-CoV-2 Mpro by aldehyde warheads based on DFT</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yang, Yongsheng ; Zhang, Chenghua ; Qian, Xingcan ; Jia, Feiyun ; Liang, Shiwei</creator><creatorcontrib>Yang, Yongsheng ; Zhang, Chenghua ; Qian, Xingcan ; Jia, Feiyun ; Liang, Shiwei</creatorcontrib><description>SARS-CoV-2 main protease, Mpro, plays a crucial role in the virus replication cycle, making it an important target for antiviral research. In this study, a simplified model obtained through truncation is used to explore the reaction mechanism of aldehyde warhead compounds inhibiting Mpro at the level of density functional theory. According to the calculation results, proton transfer (P_T)-nucleophilic attack (N_A) is the rate-determining step in the entire reaction pathway. The water molecule that plays a catalytic role occupies the oxyanion hole, which is unfavorable for the aldehyde warhead to approach the Cys145 SH. Through a hypothetical study of substituting the main chain NH with methylene, it is further confirmed that the P_T-N_A is a proton transfer-dominated process accompanied by a nucleophilic attack reaction. In this process, the oxyanion hole serves only to stabilize the aldehyde oxygen anion and therefore does not have a significant impact on the activation free energy barrier of the step. Our research results provide a unique perspective for understanding the covalent inhibition reaction of the Mpro active site. This study also offers theoretical guidance for the design of new Mpro covalent inhibitors.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp03394e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aldehydes ; Density functional theory ; Free energy ; Protons ; Reaction mechanisms ; Severe acute respiratory syndrome coronavirus 2 ; Warheads</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-10, Vol.25 (38), p.26308-26315</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, Yongsheng</creatorcontrib><creatorcontrib>Zhang, Chenghua</creatorcontrib><creatorcontrib>Qian, Xingcan</creatorcontrib><creatorcontrib>Jia, Feiyun</creatorcontrib><creatorcontrib>Liang, Shiwei</creatorcontrib><title>Computational study on the mechanisms of inhibition of SARS-CoV-2 Mpro by aldehyde warheads based on DFT</title><title>Physical chemistry chemical physics : PCCP</title><description>SARS-CoV-2 main protease, Mpro, plays a crucial role in the virus replication cycle, making it an important target for antiviral research. In this study, a simplified model obtained through truncation is used to explore the reaction mechanism of aldehyde warhead compounds inhibiting Mpro at the level of density functional theory. According to the calculation results, proton transfer (P_T)-nucleophilic attack (N_A) is the rate-determining step in the entire reaction pathway. The water molecule that plays a catalytic role occupies the oxyanion hole, which is unfavorable for the aldehyde warhead to approach the Cys145 SH. Through a hypothetical study of substituting the main chain NH with methylene, it is further confirmed that the P_T-N_A is a proton transfer-dominated process accompanied by a nucleophilic attack reaction. In this process, the oxyanion hole serves only to stabilize the aldehyde oxygen anion and therefore does not have a significant impact on the activation free energy barrier of the step. Our research results provide a unique perspective for understanding the covalent inhibition reaction of the Mpro active site. This study also offers theoretical guidance for the design of new Mpro covalent inhibitors.</description><subject>Aldehydes</subject><subject>Density functional theory</subject><subject>Free energy</subject><subject>Protons</subject><subject>Reaction mechanisms</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Warheads</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AUhQdRsFY3_oIBN26i80gyk2WJVoWKYKvbMo8bkpJkYmZCyb83QXHh6p4L3zkcDkLXlNxRwrN7y01HOM9iOEELGqc8yoiMT_-0SM_RhfcHQghNKF-gMndNNwQVKteqGvsw2BG7FocScAOmVG3lG49dgau2rHQ1c_O3Xb1vo9x9Rgy_dr3DesSqtlCOFvBR9SUo67FWHuyc9rDeXaKzQtUern7vEn2sH3f5c7R5e3rJV5uomyqGiBmbKlZkYLQ0WgsOiSkKajWROk1iYqmxIskKa4AJMCyRBCaDMSwTFgjwJbr9yZ1afQ3gw76pvIG6Vi24we-ZTGUqOI3lhN78Qw9u6KcZZkowyiWTCf8GJg5nYg</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Yang, Yongsheng</creator><creator>Zhang, Chenghua</creator><creator>Qian, Xingcan</creator><creator>Jia, Feiyun</creator><creator>Liang, Shiwei</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20231004</creationdate><title>Computational study on the mechanisms of inhibition of SARS-CoV-2 Mpro by aldehyde warheads based on DFT</title><author>Yang, Yongsheng ; Zhang, Chenghua ; Qian, Xingcan ; Jia, Feiyun ; Liang, Shiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-2cd6a2f9ecb8cbb73e5cff1db08b6540d1cd759fdce27ec2580e6a2cc297de0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aldehydes</topic><topic>Density functional theory</topic><topic>Free energy</topic><topic>Protons</topic><topic>Reaction mechanisms</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Warheads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yongsheng</creatorcontrib><creatorcontrib>Zhang, Chenghua</creatorcontrib><creatorcontrib>Qian, Xingcan</creatorcontrib><creatorcontrib>Jia, Feiyun</creatorcontrib><creatorcontrib>Liang, Shiwei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yongsheng</au><au>Zhang, Chenghua</au><au>Qian, Xingcan</au><au>Jia, Feiyun</au><au>Liang, Shiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational study on the mechanisms of inhibition of SARS-CoV-2 Mpro by aldehyde warheads based on DFT</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-10-04</date><risdate>2023</risdate><volume>25</volume><issue>38</issue><spage>26308</spage><epage>26315</epage><pages>26308-26315</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>SARS-CoV-2 main protease, Mpro, plays a crucial role in the virus replication cycle, making it an important target for antiviral research. In this study, a simplified model obtained through truncation is used to explore the reaction mechanism of aldehyde warhead compounds inhibiting Mpro at the level of density functional theory. According to the calculation results, proton transfer (P_T)-nucleophilic attack (N_A) is the rate-determining step in the entire reaction pathway. The water molecule that plays a catalytic role occupies the oxyanion hole, which is unfavorable for the aldehyde warhead to approach the Cys145 SH. Through a hypothetical study of substituting the main chain NH with methylene, it is further confirmed that the P_T-N_A is a proton transfer-dominated process accompanied by a nucleophilic attack reaction. In this process, the oxyanion hole serves only to stabilize the aldehyde oxygen anion and therefore does not have a significant impact on the activation free energy barrier of the step. Our research results provide a unique perspective for understanding the covalent inhibition reaction of the Mpro active site. This study also offers theoretical guidance for the design of new Mpro covalent inhibitors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp03394e</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-10, Vol.25 (38), p.26308-26315 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2868673148 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Aldehydes Density functional theory Free energy Protons Reaction mechanisms Severe acute respiratory syndrome coronavirus 2 Warheads |
title | Computational study on the mechanisms of inhibition of SARS-CoV-2 Mpro by aldehyde warheads based on DFT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20study%20on%20the%20mechanisms%20of%20inhibition%20of%20SARS-CoV-2%20Mpro%20by%20aldehyde%20warheads%20based%20on%20DFT&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Yang,%20Yongsheng&rft.date=2023-10-04&rft.volume=25&rft.issue=38&rft.spage=26308&rft.epage=26315&rft.pages=26308-26315&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp03394e&rft_dat=%3Cproquest%3E2872138285%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872138285&rft_id=info:pmid/&rfr_iscdi=true |