A trust-region method applied to parameter identification of a simple prey–predator model

In this paper, the calibration of the non linear Lotka–Volterra model is used to compare the robustness and efficiency (CPU time) of different optimisation algorithms. Five versions of a quasi-Newton trust-region algorithm are developed and compared with a widely used quasi-Newton method. The trust-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2005-03, Vol.29 (3), p.289-307
Hauptverfasser: Walmag, Jérôme M.B., Delhez, Éric J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 3
container_start_page 289
container_title Applied mathematical modelling
container_volume 29
creator Walmag, Jérôme M.B.
Delhez, Éric J.M.
description In this paper, the calibration of the non linear Lotka–Volterra model is used to compare the robustness and efficiency (CPU time) of different optimisation algorithms. Five versions of a quasi-Newton trust-region algorithm are developed and compared with a widely used quasi-Newton method. The trust-region algorithms is more robust and three of them are numerically cheaper than the more usual line search approach. Computation of the first derivatives of the objective function is cheaper with the backward differentiation (or adjoint model) technique than with the forward method as soon as the number of parameter is greater than a few ones. In the optimisation problem, the additional information about the Jacobian matrix made available by the forward method reduces the number of iterations but does not compensate for the increased numerical costs. A quasi-Newton trust-region algorithm with backward differentiation and BFGS update after both successful and unsuccessful iterations represents a robust and efficient algorithm that can be used to calibrate very demanding dynamic models.
doi_str_mv 10.1016/j.apm.2004.09.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28685862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X04001088</els_id><sourcerecordid>28685862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-9df34adb6d60dbbc8fe212375b7ea4c393b6001a3936145eb6236ea2ed55919f3</originalsourceid><addsrcrecordid>eNp9kE1KBDEQhbNQUEcP4C4b3XVb6Z_MNK5E_IMBNwqCi1CdVGuG7k6bZAR33sEbehIzjODOVVU93quiPsaOBeQChDxb5TgNeQFQ5dDkAPUO24cS5lkD1dMeOwhhBUlN0z57vuDRr0PMPL1YN_KB4qszHKept2R4dHxCj0klz62hMdrOaowbq-s48mCHqSc-efr4_vxKxWB0ng_OUH_IdjvsAx391hl7vL56uLzNlvc3d5cXy0xXIGLWmK6s0LTSSDBtqxcdFaIo53U7J6x02ZStBBCYGimqmlpZlJKwIFPXjWi6csZOt3sn797WFKIabNDU9ziSWwdVLOSiXqTUjImtUXsXgqdOTd4O6D-UALVBp1YqoVMbdAoalSClzMnvcgwa-87jqG34C8q6rhLJ5Dvf-ih9-m7Jq6AtjZqM9aSjMs7-c-UH4WWH_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28685862</pqid></control><display><type>article</type><title>A trust-region method applied to parameter identification of a simple prey–predator model</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Walmag, Jérôme M.B. ; Delhez, Éric J.M.</creator><creatorcontrib>Walmag, Jérôme M.B. ; Delhez, Éric J.M.</creatorcontrib><description>In this paper, the calibration of the non linear Lotka–Volterra model is used to compare the robustness and efficiency (CPU time) of different optimisation algorithms. Five versions of a quasi-Newton trust-region algorithm are developed and compared with a widely used quasi-Newton method. The trust-region algorithms is more robust and three of them are numerically cheaper than the more usual line search approach. Computation of the first derivatives of the objective function is cheaper with the backward differentiation (or adjoint model) technique than with the forward method as soon as the number of parameter is greater than a few ones. In the optimisation problem, the additional information about the Jacobian matrix made available by the forward method reduces the number of iterations but does not compensate for the increased numerical costs. A quasi-Newton trust-region algorithm with backward differentiation and BFGS update after both successful and unsuccessful iterations represents a robust and efficient algorithm that can be used to calibrate very demanding dynamic models.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2004.09.005</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Calibration ; Dynamical system ; Ecosystem model ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Measurement and testing methods ; Optimisation ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Trust-region</subject><ispartof>Applied mathematical modelling, 2005-03, Vol.29 (3), p.289-307</ispartof><rights>2004 Elsevier Inc.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-9df34adb6d60dbbc8fe212375b7ea4c393b6001a3936145eb6236ea2ed55919f3</citedby><cites>FETCH-LOGICAL-c401t-9df34adb6d60dbbc8fe212375b7ea4c393b6001a3936145eb6236ea2ed55919f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2004.09.005$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16554904$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Walmag, Jérôme M.B.</creatorcontrib><creatorcontrib>Delhez, Éric J.M.</creatorcontrib><title>A trust-region method applied to parameter identification of a simple prey–predator model</title><title>Applied mathematical modelling</title><description>In this paper, the calibration of the non linear Lotka–Volterra model is used to compare the robustness and efficiency (CPU time) of different optimisation algorithms. Five versions of a quasi-Newton trust-region algorithm are developed and compared with a widely used quasi-Newton method. The trust-region algorithms is more robust and three of them are numerically cheaper than the more usual line search approach. Computation of the first derivatives of the objective function is cheaper with the backward differentiation (or adjoint model) technique than with the forward method as soon as the number of parameter is greater than a few ones. In the optimisation problem, the additional information about the Jacobian matrix made available by the forward method reduces the number of iterations but does not compensate for the increased numerical costs. A quasi-Newton trust-region algorithm with backward differentiation and BFGS update after both successful and unsuccessful iterations represents a robust and efficient algorithm that can be used to calibrate very demanding dynamic models.</description><subject>Calibration</subject><subject>Dynamical system</subject><subject>Ecosystem model</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Measurement and testing methods</subject><subject>Optimisation</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Trust-region</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1KBDEQhbNQUEcP4C4b3XVb6Z_MNK5E_IMBNwqCi1CdVGuG7k6bZAR33sEbehIzjODOVVU93quiPsaOBeQChDxb5TgNeQFQ5dDkAPUO24cS5lkD1dMeOwhhBUlN0z57vuDRr0PMPL1YN_KB4qszHKept2R4dHxCj0klz62hMdrOaowbq-s48mCHqSc-efr4_vxKxWB0ng_OUH_IdjvsAx391hl7vL56uLzNlvc3d5cXy0xXIGLWmK6s0LTSSDBtqxcdFaIo53U7J6x02ZStBBCYGimqmlpZlJKwIFPXjWi6csZOt3sn797WFKIabNDU9ziSWwdVLOSiXqTUjImtUXsXgqdOTd4O6D-UALVBp1YqoVMbdAoalSClzMnvcgwa-87jqG34C8q6rhLJ5Dvf-ih9-m7Jq6AtjZqM9aSjMs7-c-UH4WWH_g</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Walmag, Jérôme M.B.</creator><creator>Delhez, Éric J.M.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050301</creationdate><title>A trust-region method applied to parameter identification of a simple prey–predator model</title><author>Walmag, Jérôme M.B. ; Delhez, Éric J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-9df34adb6d60dbbc8fe212375b7ea4c393b6001a3936145eb6236ea2ed55919f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Calibration</topic><topic>Dynamical system</topic><topic>Ecosystem model</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Measurement and testing methods</topic><topic>Optimisation</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Trust-region</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walmag, Jérôme M.B.</creatorcontrib><creatorcontrib>Delhez, Éric J.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walmag, Jérôme M.B.</au><au>Delhez, Éric J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A trust-region method applied to parameter identification of a simple prey–predator model</atitle><jtitle>Applied mathematical modelling</jtitle><date>2005-03-01</date><risdate>2005</risdate><volume>29</volume><issue>3</issue><spage>289</spage><epage>307</epage><pages>289-307</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>In this paper, the calibration of the non linear Lotka–Volterra model is used to compare the robustness and efficiency (CPU time) of different optimisation algorithms. Five versions of a quasi-Newton trust-region algorithm are developed and compared with a widely used quasi-Newton method. The trust-region algorithms is more robust and three of them are numerically cheaper than the more usual line search approach. Computation of the first derivatives of the objective function is cheaper with the backward differentiation (or adjoint model) technique than with the forward method as soon as the number of parameter is greater than a few ones. In the optimisation problem, the additional information about the Jacobian matrix made available by the forward method reduces the number of iterations but does not compensate for the increased numerical costs. A quasi-Newton trust-region algorithm with backward differentiation and BFGS update after both successful and unsuccessful iterations represents a robust and efficient algorithm that can be used to calibrate very demanding dynamic models.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2004.09.005</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2005-03, Vol.29 (3), p.289-307
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_28685862
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Calibration
Dynamical system
Ecosystem model
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Measurement and testing methods
Optimisation
Physics
Solid mechanics
Structural and continuum mechanics
Trust-region
title A trust-region method applied to parameter identification of a simple prey–predator model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20trust-region%20method%20applied%20to%20parameter%20identification%20of%20a%20simple%20prey%E2%80%93predator%20model&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Walmag,%20J%C3%A9r%C3%B4me%20M.B.&rft.date=2005-03-01&rft.volume=29&rft.issue=3&rft.spage=289&rft.epage=307&rft.pages=289-307&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2004.09.005&rft_dat=%3Cproquest_cross%3E28685862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28685862&rft_id=info:pmid/&rft_els_id=S0307904X04001088&rfr_iscdi=true