Medical Transformer: Universal Encoder for 3-D Brain MRI Analysis

Transfer learning has attracted considerable attention in medical image analysis because of the limited number of annotated 3-D medical datasets available for training data-driven deep learning models in the real world. We propose Medical Transformer, a novel transfer learning framework that effecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-12, Vol.35 (12), p.17779-17789
Hauptverfasser: Jun, Eunji, Jeong, Seungwoo, Heo, Da-Woon, Suk, Heung-Il
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17789
container_issue 12
container_start_page 17779
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Jun, Eunji
Jeong, Seungwoo
Heo, Da-Woon
Suk, Heung-Il
description Transfer learning has attracted considerable attention in medical image analysis because of the limited number of annotated 3-D medical datasets available for training data-driven deep learning models in the real world. We propose Medical Transformer, a novel transfer learning framework that effectively models 3-D volumetric images as a sequence of 2-D image slices. To improve the high-level representation in 3-D-form empowering spatial relations, we use a multiview approach that leverages information from three planes of the 3-D volume, while providing parameter-efficient training. For building a source model generally applicable to various tasks, we pretrain the model using self-supervised learning (SSL) for masked encoding vector prediction as a proxy task, using a large-scale normal, healthy brain magnetic resonance imaging (MRI) dataset. Our pretrained model is evaluated on three downstream tasks: 1) brain disease diagnosis; 2) brain age prediction; and 3) brain tumor segmentation, which are widely studied in brain MRI research. Experimental results demonstrate that our Medical Transformer outperforms the state-of-the-art (SOTA) transfer learning methods, efficiently reducing the number of parameters by up to approximately 92% for classification and regression tasks and 97% for segmentation task, and it also achieves good performance in scenarios where only partial training samples are used.
doi_str_mv 10.1109/TNNLS.2023.3308712
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2868118454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10258419</ieee_id><sourcerecordid>2868118454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-d7a633fcb27bc100adcbead23b0352a69e05124f0b1bd958aca11a0e700214393</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGIwb5A8aYHr0Ud2bb7tYbIioJYKKQeNtst9OkprS4Cyb8e4sgcS4zmffj8DB2BbwPwNO7-Ww2ee8jR9EXgisJeMIuEBIMUSh1erzlR4f1vP_k7SQ8TqL0nHWElEJBKi7YYEp5aU0VzJ2pfdG4Jbn7YFGX3-R8-x7VtsnJBa0SiPAxeHCmrIPp2zgY1Kba-tJfsrPCVJ56h91li6fRfPgSTl6fx8PBJLQo43WYS5MIUdgMZWaBc5PbjEyOIuMiRpOkxGPAqOAZZHkaK2MNgOEkOUeIRCq67Hbfu3LN14b8Wi9Lb6mqTE3NxmtUiQJQURy1VtxbrWu8d1TolSuXxm01cL2jp3_p6R09faDXhm4O_ZtsSfkx8seqNVzvDSUR_WvEWEWt_gP9PHHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2868118454</pqid></control><display><type>article</type><title>Medical Transformer: Universal Encoder for 3-D Brain MRI Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Jun, Eunji ; Jeong, Seungwoo ; Heo, Da-Woon ; Suk, Heung-Il</creator><creatorcontrib>Jun, Eunji ; Jeong, Seungwoo ; Heo, Da-Woon ; Suk, Heung-Il</creatorcontrib><description>Transfer learning has attracted considerable attention in medical image analysis because of the limited number of annotated 3-D medical datasets available for training data-driven deep learning models in the real world. We propose Medical Transformer, a novel transfer learning framework that effectively models 3-D volumetric images as a sequence of 2-D image slices. To improve the high-level representation in 3-D-form empowering spatial relations, we use a multiview approach that leverages information from three planes of the 3-D volume, while providing parameter-efficient training. For building a source model generally applicable to various tasks, we pretrain the model using self-supervised learning (SSL) for masked encoding vector prediction as a proxy task, using a large-scale normal, healthy brain magnetic resonance imaging (MRI) dataset. Our pretrained model is evaluated on three downstream tasks: 1) brain disease diagnosis; 2) brain age prediction; and 3) brain tumor segmentation, which are widely studied in brain MRI research. Experimental results demonstrate that our Medical Transformer outperforms the state-of-the-art (SOTA) transfer learning methods, efficiently reducing the number of parameters by up to approximately 92% for classification and regression tasks and 97% for segmentation task, and it also achieves good performance in scenarios where only partial training samples are used.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3308712</identifier><identifier>PMID: 37738193</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Brain age prediction ; brain disease diagnosis ; Brain modeling ; brain tumor segmentation ; deep learning ; Magnetic resonance imaging ; Medical diagnostic imaging ; medical image analysis ; Solid modeling ; structural MRI (sMRI) ; Task analysis ; Transfer learning ; transformer ; Transformers</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-12, Vol.35 (12), p.17779-17789</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-d7a633fcb27bc100adcbead23b0352a69e05124f0b1bd958aca11a0e700214393</cites><orcidid>0000-0001-7019-8962 ; 0000-0002-3121-7734 ; 0000-0001-9281-8325 ; 0009-0000-2141-7399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10258419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10258419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37738193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jun, Eunji</creatorcontrib><creatorcontrib>Jeong, Seungwoo</creatorcontrib><creatorcontrib>Heo, Da-Woon</creatorcontrib><creatorcontrib>Suk, Heung-Il</creatorcontrib><title>Medical Transformer: Universal Encoder for 3-D Brain MRI Analysis</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Transfer learning has attracted considerable attention in medical image analysis because of the limited number of annotated 3-D medical datasets available for training data-driven deep learning models in the real world. We propose Medical Transformer, a novel transfer learning framework that effectively models 3-D volumetric images as a sequence of 2-D image slices. To improve the high-level representation in 3-D-form empowering spatial relations, we use a multiview approach that leverages information from three planes of the 3-D volume, while providing parameter-efficient training. For building a source model generally applicable to various tasks, we pretrain the model using self-supervised learning (SSL) for masked encoding vector prediction as a proxy task, using a large-scale normal, healthy brain magnetic resonance imaging (MRI) dataset. Our pretrained model is evaluated on three downstream tasks: 1) brain disease diagnosis; 2) brain age prediction; and 3) brain tumor segmentation, which are widely studied in brain MRI research. Experimental results demonstrate that our Medical Transformer outperforms the state-of-the-art (SOTA) transfer learning methods, efficiently reducing the number of parameters by up to approximately 92% for classification and regression tasks and 97% for segmentation task, and it also achieves good performance in scenarios where only partial training samples are used.</description><subject>Brain age prediction</subject><subject>brain disease diagnosis</subject><subject>Brain modeling</subject><subject>brain tumor segmentation</subject><subject>deep learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical diagnostic imaging</subject><subject>medical image analysis</subject><subject>Solid modeling</subject><subject>structural MRI (sMRI)</subject><subject>Task analysis</subject><subject>Transfer learning</subject><subject>transformer</subject><subject>Transformers</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGIwb5A8aYHr0Ud2bb7tYbIioJYKKQeNtst9OkprS4Cyb8e4sgcS4zmffj8DB2BbwPwNO7-Ww2ee8jR9EXgisJeMIuEBIMUSh1erzlR4f1vP_k7SQ8TqL0nHWElEJBKi7YYEp5aU0VzJ2pfdG4Jbn7YFGX3-R8-x7VtsnJBa0SiPAxeHCmrIPp2zgY1Kba-tJfsrPCVJ56h91li6fRfPgSTl6fx8PBJLQo43WYS5MIUdgMZWaBc5PbjEyOIuMiRpOkxGPAqOAZZHkaK2MNgOEkOUeIRCq67Hbfu3LN14b8Wi9Lb6mqTE3NxmtUiQJQURy1VtxbrWu8d1TolSuXxm01cL2jp3_p6R09faDXhm4O_ZtsSfkx8seqNVzvDSUR_WvEWEWt_gP9PHHY</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Jun, Eunji</creator><creator>Jeong, Seungwoo</creator><creator>Heo, Da-Woon</creator><creator>Suk, Heung-Il</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7019-8962</orcidid><orcidid>https://orcid.org/0000-0002-3121-7734</orcidid><orcidid>https://orcid.org/0000-0001-9281-8325</orcidid><orcidid>https://orcid.org/0009-0000-2141-7399</orcidid></search><sort><creationdate>20241201</creationdate><title>Medical Transformer: Universal Encoder for 3-D Brain MRI Analysis</title><author>Jun, Eunji ; Jeong, Seungwoo ; Heo, Da-Woon ; Suk, Heung-Il</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-d7a633fcb27bc100adcbead23b0352a69e05124f0b1bd958aca11a0e700214393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain age prediction</topic><topic>brain disease diagnosis</topic><topic>Brain modeling</topic><topic>brain tumor segmentation</topic><topic>deep learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical diagnostic imaging</topic><topic>medical image analysis</topic><topic>Solid modeling</topic><topic>structural MRI (sMRI)</topic><topic>Task analysis</topic><topic>Transfer learning</topic><topic>transformer</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Jun, Eunji</creatorcontrib><creatorcontrib>Jeong, Seungwoo</creatorcontrib><creatorcontrib>Heo, Da-Woon</creatorcontrib><creatorcontrib>Suk, Heung-Il</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jun, Eunji</au><au>Jeong, Seungwoo</au><au>Heo, Da-Woon</au><au>Suk, Heung-Il</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medical Transformer: Universal Encoder for 3-D Brain MRI Analysis</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>35</volume><issue>12</issue><spage>17779</spage><epage>17789</epage><pages>17779-17789</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Transfer learning has attracted considerable attention in medical image analysis because of the limited number of annotated 3-D medical datasets available for training data-driven deep learning models in the real world. We propose Medical Transformer, a novel transfer learning framework that effectively models 3-D volumetric images as a sequence of 2-D image slices. To improve the high-level representation in 3-D-form empowering spatial relations, we use a multiview approach that leverages information from three planes of the 3-D volume, while providing parameter-efficient training. For building a source model generally applicable to various tasks, we pretrain the model using self-supervised learning (SSL) for masked encoding vector prediction as a proxy task, using a large-scale normal, healthy brain magnetic resonance imaging (MRI) dataset. Our pretrained model is evaluated on three downstream tasks: 1) brain disease diagnosis; 2) brain age prediction; and 3) brain tumor segmentation, which are widely studied in brain MRI research. Experimental results demonstrate that our Medical Transformer outperforms the state-of-the-art (SOTA) transfer learning methods, efficiently reducing the number of parameters by up to approximately 92% for classification and regression tasks and 97% for segmentation task, and it also achieves good performance in scenarios where only partial training samples are used.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37738193</pmid><doi>10.1109/TNNLS.2023.3308712</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7019-8962</orcidid><orcidid>https://orcid.org/0000-0002-3121-7734</orcidid><orcidid>https://orcid.org/0000-0001-9281-8325</orcidid><orcidid>https://orcid.org/0009-0000-2141-7399</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-12, Vol.35 (12), p.17779-17789
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_2868118454
source IEEE Electronic Library (IEL)
subjects Brain age prediction
brain disease diagnosis
Brain modeling
brain tumor segmentation
deep learning
Magnetic resonance imaging
Medical diagnostic imaging
medical image analysis
Solid modeling
structural MRI (sMRI)
Task analysis
Transfer learning
transformer
Transformers
title Medical Transformer: Universal Encoder for 3-D Brain MRI Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medical%20Transformer:%20Universal%20Encoder%20for%203-D%20Brain%20MRI%20Analysis&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Jun,%20Eunji&rft.date=2024-12-01&rft.volume=35&rft.issue=12&rft.spage=17779&rft.epage=17789&rft.pages=17779-17789&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3308712&rft_dat=%3Cproquest_RIE%3E2868118454%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2868118454&rft_id=info:pmid/37738193&rft_ieee_id=10258419&rfr_iscdi=true