Modeling of environmentally significant interfaces: Two case studies
When some parameters cannot be easily measured experimentally, mathematical models can often be used to deconvolute or interpret data collected on complex systems, such as those characteristic of many environmental problems. These models can help quantify the contributions of various physical or che...
Gespeichert in:
Veröffentlicht in: | Journal of Electron Spectroscopy and Related Phenomena, 150(2-3):171-184 150(2-3):171-184, 2006-02, Vol.150 (2-3), p.171-184 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When some parameters cannot be easily measured experimentally, mathematical models can often be used to deconvolute or interpret data collected on complex systems, such as those characteristic of many environmental problems. These models can help quantify the contributions of various physical or chemical phenomena that contribute to the overall behavior, thereby enabling the scientist to control and manipulate these phenomena, and thus to optimize the performance of the material or device. In the first case study presented here, a model is used to test the hypothesis that oxygen interactions with hydrogen on the catalyst particles of solid oxide fuel cell anodes can sometimes occur a finite distance away from the triple phase boundary (TPB), so that such reactions are not restricted to the TPB as normally assumed. The model may help explain a discrepancy between the observed structure of SOFCs and their performance. The second case study develops a simple physical model that allows engineers to design and control the sizes and shapes of mesopores in silica thin films. Such pore design can be useful for enhancing the selectivity and reactivity of environmental sensors and catalysts. This paper demonstrates the mutually beneficial interactions between experiment and modeling in the solution of a wide range of problems. |
---|---|
ISSN: | 0368-2048 |
DOI: | 10.1016/j.elspec.2005.05.005 |