Thin film SOFCs with cobalt-infiltrated cathodes

Anode-supported SYSZ [i.e., (Sc 2O 3) 0.1(Y 2O 3) 0.01(ZrO 2) 0.89] thin-film solid oxide fuel cells were evaluated between 650 and 800 °C. Peak power densities and power densities at cell voltages of 0.7 V were 320 and 190 mW/cm 2, respectively, at 650 °C, denoted as 320/190/650. Corresponding powe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state ionics 2005-01, Vol.176 (3), p.275-279
Hauptverfasser: Yamahara, Keiji, Jacobson, Craig P., Visco, Steven J., Zhang, Xiao-Feng, De Jonghe, Lutgard C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue 3
container_start_page 275
container_title Solid state ionics
container_volume 176
creator Yamahara, Keiji
Jacobson, Craig P.
Visco, Steven J.
Zhang, Xiao-Feng
De Jonghe, Lutgard C.
description Anode-supported SYSZ [i.e., (Sc 2O 3) 0.1(Y 2O 3) 0.01(ZrO 2) 0.89] thin-film solid oxide fuel cells were evaluated between 650 and 800 °C. Peak power densities and power densities at cell voltages of 0.7 V were 320 and 190 mW/cm 2, respectively, at 650 °C, denoted as 320/190/650. Corresponding power densities at other temperature were 1400/1100/800, 990/640/750, and 600/360/700. At 750 °C and lower, the power densities and ASRs (area-specific resistances) were better than those reported for an 8YSZ cell with record performance [S. de Souza, S.J. Visco, L.C. De Jonghe, in Proceeding of the Second European Solid Oxide Fuel Cell Forum, edited by B. Thorstensen, vol. 2 (1996), 677.], while showing a smaller temperature dependence. Further performance improvements of about a factor of 2 were obtained at 650 °C after infiltration of the LSM/YSZ cathodes with a cobalt solution. This improvement persisted up to about 750 °C, being more pronounced at the lower temperatures. The results indicate the potential benefit of cobalt infiltration for reduced temperature SOFCs. AC measurements revealed that the majority of effect resulted from a decrease in the non-ohmic resistance of the cathode. TEM observations found ∼25 nm Co 3O 4 particles in the pores of the modified LSM-composite cathodes. The AC impedance response following cobalt infiltration indicates a decrease of the effective charge transfer resistance.
doi_str_mv 10.1016/j.ssi.2004.08.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28680394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167273804005223</els_id><sourcerecordid>28680394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-64caae3429a9e4e062487a1f7d535062fd53418234e2f8d0ac6132b68f2eeb3d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuevO06-WiSxZMUq0KhB-s5pNkJTdnu1iRV_PdG6tnTyzDPOzAPIbcUGgpU3u-alELDAEQDugGqzsiEasVqJXV7TiaFUTVTXF-Sq5R2ACC5lhMC620YKh_6ffW2WsxT9RXytnLjxva5DkNZ5GgzdpWzeTt2mK7Jhbd9wpu_nJL3xdN6_lIvV8-v88dl7TjTuZbCWYtcsNa2KBAkE1pZ6lU347My-ZKCasYFMq87sE5SzjZSe4a44R2fkrvT3UMcP46YstmH5LDv7YDjMRmmpQbeigLSE-jimFJEbw4x7G38NhTMrxuzM8WN-XVjQJvipnQeTh0sH3wGjCa5gIPDLkR02XRj-Kf9A7u2azY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28680394</pqid></control><display><type>article</type><title>Thin film SOFCs with cobalt-infiltrated cathodes</title><source>Elsevier ScienceDirect Journals</source><creator>Yamahara, Keiji ; Jacobson, Craig P. ; Visco, Steven J. ; Zhang, Xiao-Feng ; De Jonghe, Lutgard C.</creator><creatorcontrib>Yamahara, Keiji ; Jacobson, Craig P. ; Visco, Steven J. ; Zhang, Xiao-Feng ; De Jonghe, Lutgard C.</creatorcontrib><description>Anode-supported SYSZ [i.e., (Sc 2O 3) 0.1(Y 2O 3) 0.01(ZrO 2) 0.89] thin-film solid oxide fuel cells were evaluated between 650 and 800 °C. Peak power densities and power densities at cell voltages of 0.7 V were 320 and 190 mW/cm 2, respectively, at 650 °C, denoted as 320/190/650. Corresponding power densities at other temperature were 1400/1100/800, 990/640/750, and 600/360/700. At 750 °C and lower, the power densities and ASRs (area-specific resistances) were better than those reported for an 8YSZ cell with record performance [S. de Souza, S.J. Visco, L.C. De Jonghe, in Proceeding of the Second European Solid Oxide Fuel Cell Forum, edited by B. Thorstensen, vol. 2 (1996), 677.], while showing a smaller temperature dependence. Further performance improvements of about a factor of 2 were obtained at 650 °C after infiltration of the LSM/YSZ cathodes with a cobalt solution. This improvement persisted up to about 750 °C, being more pronounced at the lower temperatures. The results indicate the potential benefit of cobalt infiltration for reduced temperature SOFCs. AC measurements revealed that the majority of effect resulted from a decrease in the non-ohmic resistance of the cathode. TEM observations found ∼25 nm Co 3O 4 particles in the pores of the modified LSM-composite cathodes. The AC impedance response following cobalt infiltration indicates a decrease of the effective charge transfer resistance.</description><identifier>ISSN: 0167-2738</identifier><identifier>EISSN: 1872-7689</identifier><identifier>DOI: 10.1016/j.ssi.2004.08.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cobalt doping ; Colloidal deposition ; Reduced temperature SOFCs ; Scandia-stabilized zirconia ; Solid oxide fuel cells</subject><ispartof>Solid state ionics, 2005-01, Vol.176 (3), p.275-279</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-64caae3429a9e4e062487a1f7d535062fd53418234e2f8d0ac6132b68f2eeb3d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ssi.2004.08.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Yamahara, Keiji</creatorcontrib><creatorcontrib>Jacobson, Craig P.</creatorcontrib><creatorcontrib>Visco, Steven J.</creatorcontrib><creatorcontrib>Zhang, Xiao-Feng</creatorcontrib><creatorcontrib>De Jonghe, Lutgard C.</creatorcontrib><title>Thin film SOFCs with cobalt-infiltrated cathodes</title><title>Solid state ionics</title><description>Anode-supported SYSZ [i.e., (Sc 2O 3) 0.1(Y 2O 3) 0.01(ZrO 2) 0.89] thin-film solid oxide fuel cells were evaluated between 650 and 800 °C. Peak power densities and power densities at cell voltages of 0.7 V were 320 and 190 mW/cm 2, respectively, at 650 °C, denoted as 320/190/650. Corresponding power densities at other temperature were 1400/1100/800, 990/640/750, and 600/360/700. At 750 °C and lower, the power densities and ASRs (area-specific resistances) were better than those reported for an 8YSZ cell with record performance [S. de Souza, S.J. Visco, L.C. De Jonghe, in Proceeding of the Second European Solid Oxide Fuel Cell Forum, edited by B. Thorstensen, vol. 2 (1996), 677.], while showing a smaller temperature dependence. Further performance improvements of about a factor of 2 were obtained at 650 °C after infiltration of the LSM/YSZ cathodes with a cobalt solution. This improvement persisted up to about 750 °C, being more pronounced at the lower temperatures. The results indicate the potential benefit of cobalt infiltration for reduced temperature SOFCs. AC measurements revealed that the majority of effect resulted from a decrease in the non-ohmic resistance of the cathode. TEM observations found ∼25 nm Co 3O 4 particles in the pores of the modified LSM-composite cathodes. The AC impedance response following cobalt infiltration indicates a decrease of the effective charge transfer resistance.</description><subject>Cobalt doping</subject><subject>Colloidal deposition</subject><subject>Reduced temperature SOFCs</subject><subject>Scandia-stabilized zirconia</subject><subject>Solid oxide fuel cells</subject><issn>0167-2738</issn><issn>1872-7689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuevO06-WiSxZMUq0KhB-s5pNkJTdnu1iRV_PdG6tnTyzDPOzAPIbcUGgpU3u-alELDAEQDugGqzsiEasVqJXV7TiaFUTVTXF-Sq5R2ACC5lhMC620YKh_6ffW2WsxT9RXytnLjxva5DkNZ5GgzdpWzeTt2mK7Jhbd9wpu_nJL3xdN6_lIvV8-v88dl7TjTuZbCWYtcsNa2KBAkE1pZ6lU347My-ZKCasYFMq87sE5SzjZSe4a44R2fkrvT3UMcP46YstmH5LDv7YDjMRmmpQbeigLSE-jimFJEbw4x7G38NhTMrxuzM8WN-XVjQJvipnQeTh0sH3wGjCa5gIPDLkR02XRj-Kf9A7u2azY</recordid><startdate>20050131</startdate><enddate>20050131</enddate><creator>Yamahara, Keiji</creator><creator>Jacobson, Craig P.</creator><creator>Visco, Steven J.</creator><creator>Zhang, Xiao-Feng</creator><creator>De Jonghe, Lutgard C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20050131</creationdate><title>Thin film SOFCs with cobalt-infiltrated cathodes</title><author>Yamahara, Keiji ; Jacobson, Craig P. ; Visco, Steven J. ; Zhang, Xiao-Feng ; De Jonghe, Lutgard C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-64caae3429a9e4e062487a1f7d535062fd53418234e2f8d0ac6132b68f2eeb3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cobalt doping</topic><topic>Colloidal deposition</topic><topic>Reduced temperature SOFCs</topic><topic>Scandia-stabilized zirconia</topic><topic>Solid oxide fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamahara, Keiji</creatorcontrib><creatorcontrib>Jacobson, Craig P.</creatorcontrib><creatorcontrib>Visco, Steven J.</creatorcontrib><creatorcontrib>Zhang, Xiao-Feng</creatorcontrib><creatorcontrib>De Jonghe, Lutgard C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamahara, Keiji</au><au>Jacobson, Craig P.</au><au>Visco, Steven J.</au><au>Zhang, Xiao-Feng</au><au>De Jonghe, Lutgard C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin film SOFCs with cobalt-infiltrated cathodes</atitle><jtitle>Solid state ionics</jtitle><date>2005-01-31</date><risdate>2005</risdate><volume>176</volume><issue>3</issue><spage>275</spage><epage>279</epage><pages>275-279</pages><issn>0167-2738</issn><eissn>1872-7689</eissn><abstract>Anode-supported SYSZ [i.e., (Sc 2O 3) 0.1(Y 2O 3) 0.01(ZrO 2) 0.89] thin-film solid oxide fuel cells were evaluated between 650 and 800 °C. Peak power densities and power densities at cell voltages of 0.7 V were 320 and 190 mW/cm 2, respectively, at 650 °C, denoted as 320/190/650. Corresponding power densities at other temperature were 1400/1100/800, 990/640/750, and 600/360/700. At 750 °C and lower, the power densities and ASRs (area-specific resistances) were better than those reported for an 8YSZ cell with record performance [S. de Souza, S.J. Visco, L.C. De Jonghe, in Proceeding of the Second European Solid Oxide Fuel Cell Forum, edited by B. Thorstensen, vol. 2 (1996), 677.], while showing a smaller temperature dependence. Further performance improvements of about a factor of 2 were obtained at 650 °C after infiltration of the LSM/YSZ cathodes with a cobalt solution. This improvement persisted up to about 750 °C, being more pronounced at the lower temperatures. The results indicate the potential benefit of cobalt infiltration for reduced temperature SOFCs. AC measurements revealed that the majority of effect resulted from a decrease in the non-ohmic resistance of the cathode. TEM observations found ∼25 nm Co 3O 4 particles in the pores of the modified LSM-composite cathodes. The AC impedance response following cobalt infiltration indicates a decrease of the effective charge transfer resistance.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ssi.2004.08.017</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-2738
ispartof Solid state ionics, 2005-01, Vol.176 (3), p.275-279
issn 0167-2738
1872-7689
language eng
recordid cdi_proquest_miscellaneous_28680394
source Elsevier ScienceDirect Journals
subjects Cobalt doping
Colloidal deposition
Reduced temperature SOFCs
Scandia-stabilized zirconia
Solid oxide fuel cells
title Thin film SOFCs with cobalt-infiltrated cathodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin%20film%20SOFCs%20with%20cobalt-infiltrated%20cathodes&rft.jtitle=Solid%20state%20ionics&rft.au=Yamahara,%20Keiji&rft.date=2005-01-31&rft.volume=176&rft.issue=3&rft.spage=275&rft.epage=279&rft.pages=275-279&rft.issn=0167-2738&rft.eissn=1872-7689&rft_id=info:doi/10.1016/j.ssi.2004.08.017&rft_dat=%3Cproquest_cross%3E28680394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28680394&rft_id=info:pmid/&rft_els_id=S0167273804005223&rfr_iscdi=true