The Triple Phase Boundary A Mathematical Model and Experimental Investigations for Fuel Cells
A mathematical model is developed which describes the nature, properties, and scaling of the triple phase boundary (TPB) for a Pt/Nafion polymer electrolyte membrane fuel cell (PEMFC) system. The model incorporates coupled reaction and diffusion phenomena, leading to a concept of the TPB not as a si...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2005-01, Vol.152 (2), p.A439-A444 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A444 |
---|---|
container_issue | 2 |
container_start_page | A439 |
container_title | Journal of the Electrochemical Society |
container_volume | 152 |
creator | O'Hayre, Ryan Barnett, David M Prinz, Fritz B |
description | A mathematical model is developed which describes the nature, properties, and scaling of the triple phase boundary (TPB) for a Pt/Nafion polymer electrolyte membrane fuel cell (PEMFC) system. The model incorporates coupled reaction and diffusion phenomena, leading to a concept of the TPB not as a singularity, but rather as having an "effective width." The "effective width" of the TPB depends on the interplay between the relative rates of the reaction and diffusion processes at the Pt/Nafion interface. Implications of the model for PEMFC catalyst layer design are explored. Additionally, scaling predictions of the model are compared with kinetic observations from geometrically well-defined Pt-microelectrode/Nafion experiments and are shown to match favorably with experimental results. |
doi_str_mv | 10.1149/1.1851054 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28677656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28677656</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-5f84dacdf3a1fa1dce6e5d4548c5790cbd64144844819f13889ec288932ff6793</originalsourceid><addsrcrecordid>eNotTs1OwzAYywEkxuDAG-TEraNf89P0OKoNJm2CQzmiKSRfaFGWlqZF8PZEAsmyZcuyTMgN5CsAXt3BCpSAXPAzsshzYBmXAi7IZYwfyYLi5YK8Ni3SZuwGj_S51RHpfT8Hq8cfuqYHPbV40lNntKeH3qKnOli6-R5w7E4YphTvwhfGqXtPrT5E6vqRbudUrNH7eEXOnfYRr_91SV62m6Z-zPZPD7t6vc8GUHLKhFPcamMd0-A0WIMSheWCKyPKKjdvVnLgXCVA5YApVaEpErPCOVlWbElu_3aHsf-c05_jqYsmPdAB-zkeCyXLUgrJfgEzHVN5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28677656</pqid></control><display><type>article</type><title>The Triple Phase Boundary A Mathematical Model and Experimental Investigations for Fuel Cells</title><source>IOP Publishing Journals</source><creator>O'Hayre, Ryan ; Barnett, David M ; Prinz, Fritz B</creator><creatorcontrib>O'Hayre, Ryan ; Barnett, David M ; Prinz, Fritz B</creatorcontrib><description>A mathematical model is developed which describes the nature, properties, and scaling of the triple phase boundary (TPB) for a Pt/Nafion polymer electrolyte membrane fuel cell (PEMFC) system. The model incorporates coupled reaction and diffusion phenomena, leading to a concept of the TPB not as a singularity, but rather as having an "effective width." The "effective width" of the TPB depends on the interplay between the relative rates of the reaction and diffusion processes at the Pt/Nafion interface. Implications of the model for PEMFC catalyst layer design are explored. Additionally, scaling predictions of the model are compared with kinetic observations from geometrically well-defined Pt-microelectrode/Nafion experiments and are shown to match favorably with experimental results.</description><identifier>ISSN: 0013-4651</identifier><identifier>DOI: 10.1149/1.1851054</identifier><language>eng</language><ispartof>Journal of the Electrochemical Society, 2005-01, Vol.152 (2), p.A439-A444</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>O'Hayre, Ryan</creatorcontrib><creatorcontrib>Barnett, David M</creatorcontrib><creatorcontrib>Prinz, Fritz B</creatorcontrib><title>The Triple Phase Boundary A Mathematical Model and Experimental Investigations for Fuel Cells</title><title>Journal of the Electrochemical Society</title><description>A mathematical model is developed which describes the nature, properties, and scaling of the triple phase boundary (TPB) for a Pt/Nafion polymer electrolyte membrane fuel cell (PEMFC) system. The model incorporates coupled reaction and diffusion phenomena, leading to a concept of the TPB not as a singularity, but rather as having an "effective width." The "effective width" of the TPB depends on the interplay between the relative rates of the reaction and diffusion processes at the Pt/Nafion interface. Implications of the model for PEMFC catalyst layer design are explored. Additionally, scaling predictions of the model are compared with kinetic observations from geometrically well-defined Pt-microelectrode/Nafion experiments and are shown to match favorably with experimental results.</description><issn>0013-4651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotTs1OwzAYywEkxuDAG-TEraNf89P0OKoNJm2CQzmiKSRfaFGWlqZF8PZEAsmyZcuyTMgN5CsAXt3BCpSAXPAzsshzYBmXAi7IZYwfyYLi5YK8Ni3SZuwGj_S51RHpfT8Hq8cfuqYHPbV40lNntKeH3qKnOli6-R5w7E4YphTvwhfGqXtPrT5E6vqRbudUrNH7eEXOnfYRr_91SV62m6Z-zPZPD7t6vc8GUHLKhFPcamMd0-A0WIMSheWCKyPKKjdvVnLgXCVA5YApVaEpErPCOVlWbElu_3aHsf-c05_jqYsmPdAB-zkeCyXLUgrJfgEzHVN5</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>O'Hayre, Ryan</creator><creator>Barnett, David M</creator><creator>Prinz, Fritz B</creator><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20050101</creationdate><title>The Triple Phase Boundary A Mathematical Model and Experimental Investigations for Fuel Cells</title><author>O'Hayre, Ryan ; Barnett, David M ; Prinz, Fritz B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-5f84dacdf3a1fa1dce6e5d4548c5790cbd64144844819f13889ec288932ff6793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Hayre, Ryan</creatorcontrib><creatorcontrib>Barnett, David M</creatorcontrib><creatorcontrib>Prinz, Fritz B</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Hayre, Ryan</au><au>Barnett, David M</au><au>Prinz, Fritz B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Triple Phase Boundary A Mathematical Model and Experimental Investigations for Fuel Cells</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>152</volume><issue>2</issue><spage>A439</spage><epage>A444</epage><pages>A439-A444</pages><issn>0013-4651</issn><abstract>A mathematical model is developed which describes the nature, properties, and scaling of the triple phase boundary (TPB) for a Pt/Nafion polymer electrolyte membrane fuel cell (PEMFC) system. The model incorporates coupled reaction and diffusion phenomena, leading to a concept of the TPB not as a singularity, but rather as having an "effective width." The "effective width" of the TPB depends on the interplay between the relative rates of the reaction and diffusion processes at the Pt/Nafion interface. Implications of the model for PEMFC catalyst layer design are explored. Additionally, scaling predictions of the model are compared with kinetic observations from geometrically well-defined Pt-microelectrode/Nafion experiments and are shown to match favorably with experimental results.</abstract><doi>10.1149/1.1851054</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2005-01, Vol.152 (2), p.A439-A444 |
issn | 0013-4651 |
language | eng |
recordid | cdi_proquest_miscellaneous_28677656 |
source | IOP Publishing Journals |
title | The Triple Phase Boundary A Mathematical Model and Experimental Investigations for Fuel Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Triple%20Phase%20Boundary%20A%20Mathematical%20Model%20and%20Experimental%20Investigations%20for%20Fuel%20Cells&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=O'Hayre,%20Ryan&rft.date=2005-01-01&rft.volume=152&rft.issue=2&rft.spage=A439&rft.epage=A444&rft.pages=A439-A444&rft.issn=0013-4651&rft_id=info:doi/10.1149/1.1851054&rft_dat=%3Cproquest%3E28677656%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28677656&rft_id=info:pmid/&rfr_iscdi=true |