Time multiplexed color image processing based on a CNN with cell-state outputs
A practical system approach for time-multiplexing cellular neural network (CNN) implementations suitable for processing large and complex images using small CNN arrays is presented. For real size applications, due to hardware limitations, it is impossible to have a one-on-one mapping between the CNN...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 1998-06, Vol.6 (2), p.314-322 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 2 |
container_start_page | 314 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 6 |
creator | Lei Wang De Gyvez, J.P. Sanchez-Sinencio, E. |
description | A practical system approach for time-multiplexing cellular neural network (CNN) implementations suitable for processing large and complex images using small CNN arrays is presented. For real size applications, due to hardware limitations, it is impossible to have a one-on-one mapping between the CNN hardware cells and all the pixels in the image involved. This paper presents a practical solution by processing the input image, block by block, with the number of pixels in a block being the same as the number of CNN cells in the array. Furthermore, unlike other implementations in which the output is observed at the hard-limiting block, the very large scale integrated (VLSI) architecture hereby described monitors the outputs from the state node. While previous implementations are mostly suitable for black and white applications because of the thresholded outputs, our approach is especially suitable for applications in color (gray) image processing due to the analog nature of the state node. Experimental complementary metal-oxide-semiconductor (CMOS) chip results in good agreement with theoretical results are presented. |
doi_str_mv | 10.1109/92.678895 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28672792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>678895</ieee_id><sourcerecordid>28672792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-91c03090e696d82faba9ddb203570a3cba12ea9096414a21a444773907ee71833</originalsourceid><addsrcrecordid>eNqFkLtPwzAQxi0EEqUwsDJ5QEgMgbOd-DGiipdUlaXMkeNcilEeJXYE_PekStWVW-6k73ffnT5CLhncMQbm3vA7qbQ22RGZsSxTiRnreJxBikRzBqfkLIRPAJamBmZktfYN0maoo9_W-IMldV3d9dQ3doN023cOQ_DthhY2jGLXUksXqxX99vGDOqzrJEQbkXZD3A4xnJOTytYBL_Z9Tt6fHteLl2T59vy6eFgmTigeE8McCDCA0shS88oW1pRlwUFkCqxwhWUcrQEjU5ZazmyapkoJAwpRMS3EnNxMvuOHXwOGmDc-7N6xLXZDyLmWiivD_wel5hogG8HbCXR9F0KPVb7txxD635xBvos2Nzyfoh3Z672pDc7WVW9b58NhgQstZLa7fTVhHhEP6t7jD-DKfv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26828005</pqid></control><display><type>article</type><title>Time multiplexed color image processing based on a CNN with cell-state outputs</title><source>IEEE Electronic Library (IEL)</source><creator>Lei Wang ; De Gyvez, J.P. ; Sanchez-Sinencio, E.</creator><creatorcontrib>Lei Wang ; De Gyvez, J.P. ; Sanchez-Sinencio, E.</creatorcontrib><description>A practical system approach for time-multiplexing cellular neural network (CNN) implementations suitable for processing large and complex images using small CNN arrays is presented. For real size applications, due to hardware limitations, it is impossible to have a one-on-one mapping between the CNN hardware cells and all the pixels in the image involved. This paper presents a practical solution by processing the input image, block by block, with the number of pixels in a block being the same as the number of CNN cells in the array. Furthermore, unlike other implementations in which the output is observed at the hard-limiting block, the very large scale integrated (VLSI) architecture hereby described monitors the outputs from the state node. While previous implementations are mostly suitable for black and white applications because of the thresholded outputs, our approach is especially suitable for applications in color (gray) image processing due to the analog nature of the state node. Experimental complementary metal-oxide-semiconductor (CMOS) chip results in good agreement with theoretical results are presented.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/92.678895</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Cellular neural networks ; Color ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Hardware ; Image edge detection ; Image processing ; Neural networks ; Pixel ; Power dissipation ; Signal processing ; Very large scale integration</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 1998-06, Vol.6 (2), p.314-322</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-91c03090e696d82faba9ddb203570a3cba12ea9096414a21a444773907ee71833</citedby><cites>FETCH-LOGICAL-c372t-91c03090e696d82faba9ddb203570a3cba12ea9096414a21a444773907ee71833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/678895$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/678895$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2383652$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei Wang</creatorcontrib><creatorcontrib>De Gyvez, J.P.</creatorcontrib><creatorcontrib>Sanchez-Sinencio, E.</creatorcontrib><title>Time multiplexed color image processing based on a CNN with cell-state outputs</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>A practical system approach for time-multiplexing cellular neural network (CNN) implementations suitable for processing large and complex images using small CNN arrays is presented. For real size applications, due to hardware limitations, it is impossible to have a one-on-one mapping between the CNN hardware cells and all the pixels in the image involved. This paper presents a practical solution by processing the input image, block by block, with the number of pixels in a block being the same as the number of CNN cells in the array. Furthermore, unlike other implementations in which the output is observed at the hard-limiting block, the very large scale integrated (VLSI) architecture hereby described monitors the outputs from the state node. While previous implementations are mostly suitable for black and white applications because of the thresholded outputs, our approach is especially suitable for applications in color (gray) image processing due to the analog nature of the state node. Experimental complementary metal-oxide-semiconductor (CMOS) chip results in good agreement with theoretical results are presented.</description><subject>Applied sciences</subject><subject>Cellular neural networks</subject><subject>Color</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Hardware</subject><subject>Image edge detection</subject><subject>Image processing</subject><subject>Neural networks</subject><subject>Pixel</subject><subject>Power dissipation</subject><subject>Signal processing</subject><subject>Very large scale integration</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkLtPwzAQxi0EEqUwsDJ5QEgMgbOd-DGiipdUlaXMkeNcilEeJXYE_PekStWVW-6k73ffnT5CLhncMQbm3vA7qbQ22RGZsSxTiRnreJxBikRzBqfkLIRPAJamBmZktfYN0maoo9_W-IMldV3d9dQ3doN023cOQ_DthhY2jGLXUksXqxX99vGDOqzrJEQbkXZD3A4xnJOTytYBL_Z9Tt6fHteLl2T59vy6eFgmTigeE8McCDCA0shS88oW1pRlwUFkCqxwhWUcrQEjU5ZazmyapkoJAwpRMS3EnNxMvuOHXwOGmDc-7N6xLXZDyLmWiivD_wel5hogG8HbCXR9F0KPVb7txxD635xBvos2Nzyfoh3Z672pDc7WVW9b58NhgQstZLa7fTVhHhEP6t7jD-DKfv8</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Lei Wang</creator><creator>De Gyvez, J.P.</creator><creator>Sanchez-Sinencio, E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19980601</creationdate><title>Time multiplexed color image processing based on a CNN with cell-state outputs</title><author>Lei Wang ; De Gyvez, J.P. ; Sanchez-Sinencio, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-91c03090e696d82faba9ddb203570a3cba12ea9096414a21a444773907ee71833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Cellular neural networks</topic><topic>Color</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Hardware</topic><topic>Image edge detection</topic><topic>Image processing</topic><topic>Neural networks</topic><topic>Pixel</topic><topic>Power dissipation</topic><topic>Signal processing</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei Wang</creatorcontrib><creatorcontrib>De Gyvez, J.P.</creatorcontrib><creatorcontrib>Sanchez-Sinencio, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lei Wang</au><au>De Gyvez, J.P.</au><au>Sanchez-Sinencio, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time multiplexed color image processing based on a CNN with cell-state outputs</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>1998-06-01</date><risdate>1998</risdate><volume>6</volume><issue>2</issue><spage>314</spage><epage>322</epage><pages>314-322</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>A practical system approach for time-multiplexing cellular neural network (CNN) implementations suitable for processing large and complex images using small CNN arrays is presented. For real size applications, due to hardware limitations, it is impossible to have a one-on-one mapping between the CNN hardware cells and all the pixels in the image involved. This paper presents a practical solution by processing the input image, block by block, with the number of pixels in a block being the same as the number of CNN cells in the array. Furthermore, unlike other implementations in which the output is observed at the hard-limiting block, the very large scale integrated (VLSI) architecture hereby described monitors the outputs from the state node. While previous implementations are mostly suitable for black and white applications because of the thresholded outputs, our approach is especially suitable for applications in color (gray) image processing due to the analog nature of the state node. Experimental complementary metal-oxide-semiconductor (CMOS) chip results in good agreement with theoretical results are presented.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/92.678895</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 1998-06, Vol.6 (2), p.314-322 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_proquest_miscellaneous_28672792 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Cellular neural networks Color Electric, optical and optoelectronic circuits Electronics Exact sciences and technology Hardware Image edge detection Image processing Neural networks Pixel Power dissipation Signal processing Very large scale integration |
title | Time multiplexed color image processing based on a CNN with cell-state outputs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20multiplexed%20color%20image%20processing%20based%20on%20a%20CNN%20with%20cell-state%20outputs&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Lei%20Wang&rft.date=1998-06-01&rft.volume=6&rft.issue=2&rft.spage=314&rft.epage=322&rft.pages=314-322&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/92.678895&rft_dat=%3Cproquest_RIE%3E28672792%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26828005&rft_id=info:pmid/&rft_ieee_id=678895&rfr_iscdi=true |