DPCN++: Differentiable Phase Correlation Network for Versatile Pose Registration
Pose registration is critical in vision and robotics. This article focuses on the challenging task of initialization-free pose registration up to 7DoF for homogeneous and heterogeneous measurements. While recent learning-based methods show promise using differentiable solvers, they either rely on he...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2023-12, Vol.45 (12), p.14366-14384 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14384 |
---|---|
container_issue | 12 |
container_start_page | 14366 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Chen, Zexi Liao, Yiyi Du, Haozhe Zhang, Haodong Xu, Xuecheng Lu, Haojian Xiong, Rong Wang, Yue |
description | Pose registration is critical in vision and robotics. This article focuses on the challenging task of initialization-free pose registration up to 7DoF for homogeneous and heterogeneous measurements. While recent learning-based methods show promise using differentiable solvers, they either rely on heuristically defined correspondences or require initialization. Phase correlation seeks solutions in the spectral domain and is correspondence-free and initialization-free. Following this, we propose a differentiable solver and combine it with simple feature extraction networks, namely DPCN++. It can perform registration for homo/hetero inputs and generalizes well on unseen objects. Specifically, the feature extraction networks first learn dense feature grids from a pair of homogeneous/heterogeneous measurements. These feature grids are then transformed into a translation and scale invariant spectrum representation based on Fourier transform and spherical radial aggregation, decoupling translation and scale from rotation. Next, the rotation, scale, and translation are independently and efficiently estimated in the spectrum step-by-step. The entire pipeline is differentiable and trained end-to-end. We evaluate DCPN++ on a wide range of tasks taking different input modalities, including 2D bird's-eye view images, 3D object and scene measurements, and medical images. Experimental results demonstrate that DCPN++ outperforms both classical and learning-based baselines, especially on partially observed and heterogeneous measurements. |
doi_str_mv | 10.1109/TPAMI.2023.3317501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2867152846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10256027</ieee_id><sourcerecordid>2867152846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2079-1b38bfa6c1e56f80fa7b9249c6f25ebc3c6860b4a482f741466bc34bef05bc733</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFK0ff0A8BLwIkro7-xlvEr8KtQZRr2ETZjU1ZutuivjvTa0H8TQwPO8wvIQcMjpmjGZnj8XF3WQMFPiYc6YlZRtkBEzRNIMMNsmIMgWpMWB2yG6Mc0qZkJRvkx2uNWRSiREpLot8dnp6nlw2zmHArm9s1WJSvNqISe5DwNb2je-SGfafPrwlzofkGUMctivnB_aAL03sw4_bJ1vOthEPfuceebq-esxv0-n9zSS_mKY1UJ2lrOKmclbVDKVyhjqrqwxEVisHEqua18ooWgkrDDgtmFBqWIoKHZVVrTnfIyfru4vgP5YY-_K9iTW2re3QL2MJRmkmwQg10ON_dO6XoRu-G5SRSgquYFCwVnXwMQZ05SI07zZ8lYyWq77Ln77LVd_lb99D6GgdahDxTwCkoqD5N9ekeQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885654362</pqid></control><display><type>article</type><title>DPCN++: Differentiable Phase Correlation Network for Versatile Pose Registration</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Zexi ; Liao, Yiyi ; Du, Haozhe ; Zhang, Haodong ; Xu, Xuecheng ; Lu, Haojian ; Xiong, Rong ; Wang, Yue</creator><creatorcontrib>Chen, Zexi ; Liao, Yiyi ; Du, Haozhe ; Zhang, Haodong ; Xu, Xuecheng ; Lu, Haojian ; Xiong, Rong ; Wang, Yue</creatorcontrib><description>Pose registration is critical in vision and robotics. This article focuses on the challenging task of initialization-free pose registration up to 7DoF for homogeneous and heterogeneous measurements. While recent learning-based methods show promise using differentiable solvers, they either rely on heuristically defined correspondences or require initialization. Phase correlation seeks solutions in the spectral domain and is correspondence-free and initialization-free. Following this, we propose a differentiable solver and combine it with simple feature extraction networks, namely DPCN++. It can perform registration for homo/hetero inputs and generalizes well on unseen objects. Specifically, the feature extraction networks first learn dense feature grids from a pair of homogeneous/heterogeneous measurements. These feature grids are then transformed into a translation and scale invariant spectrum representation based on Fourier transform and spherical radial aggregation, decoupling translation and scale from rotation. Next, the rotation, scale, and translation are independently and efficiently estimated in the spectrum step-by-step. The entire pipeline is differentiable and trained end-to-end. We evaluate DCPN++ on a wide range of tasks taking different input modalities, including 2D bird's-eye view images, 3D object and scene measurements, and medical images. Experimental results demonstrate that DCPN++ outperforms both classical and learning-based baselines, especially on partially observed and heterogeneous measurements.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 2160-9292</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2023.3317501</identifier><identifier>PMID: 37729564</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Correlation ; Decoupling ; differentiable solver ; end-to-end learning ; Feature extraction ; Fourier transforms ; Learning ; Learning systems ; Medical imaging ; Pose registration ; Registration ; Representation learning ; Robotics ; Rotation ; Solvers ; Task analysis ; Three-dimensional displays</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-12, Vol.45 (12), p.14366-14384</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2079-1b38bfa6c1e56f80fa7b9249c6f25ebc3c6860b4a482f741466bc34bef05bc733</citedby><cites>FETCH-LOGICAL-c2079-1b38bfa6c1e56f80fa7b9249c6f25ebc3c6860b4a482f741466bc34bef05bc733</cites><orcidid>0000-0001-6662-3022 ; 0000-0002-0762-6714 ; 0000-0001-9318-9014 ; 0000-0002-0981-935X ; 0000-0002-9782-6022 ; 0000-0002-9431-7572 ; 0000-0001-5448-6307 ; 0000-0002-1393-3040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10256027$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10256027$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Zexi</creatorcontrib><creatorcontrib>Liao, Yiyi</creatorcontrib><creatorcontrib>Du, Haozhe</creatorcontrib><creatorcontrib>Zhang, Haodong</creatorcontrib><creatorcontrib>Xu, Xuecheng</creatorcontrib><creatorcontrib>Lu, Haojian</creatorcontrib><creatorcontrib>Xiong, Rong</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><title>DPCN++: Differentiable Phase Correlation Network for Versatile Pose Registration</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Pose registration is critical in vision and robotics. This article focuses on the challenging task of initialization-free pose registration up to 7DoF for homogeneous and heterogeneous measurements. While recent learning-based methods show promise using differentiable solvers, they either rely on heuristically defined correspondences or require initialization. Phase correlation seeks solutions in the spectral domain and is correspondence-free and initialization-free. Following this, we propose a differentiable solver and combine it with simple feature extraction networks, namely DPCN++. It can perform registration for homo/hetero inputs and generalizes well on unseen objects. Specifically, the feature extraction networks first learn dense feature grids from a pair of homogeneous/heterogeneous measurements. These feature grids are then transformed into a translation and scale invariant spectrum representation based on Fourier transform and spherical radial aggregation, decoupling translation and scale from rotation. Next, the rotation, scale, and translation are independently and efficiently estimated in the spectrum step-by-step. The entire pipeline is differentiable and trained end-to-end. We evaluate DCPN++ on a wide range of tasks taking different input modalities, including 2D bird's-eye view images, 3D object and scene measurements, and medical images. Experimental results demonstrate that DCPN++ outperforms both classical and learning-based baselines, especially on partially observed and heterogeneous measurements.</description><subject>Correlation</subject><subject>Decoupling</subject><subject>differentiable solver</subject><subject>end-to-end learning</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Medical imaging</subject><subject>Pose registration</subject><subject>Registration</subject><subject>Representation learning</subject><subject>Robotics</subject><subject>Rotation</subject><subject>Solvers</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><issn>0162-8828</issn><issn>2160-9292</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0E1Lw0AQBuBFFK0ff0A8BLwIkro7-xlvEr8KtQZRr2ETZjU1ZutuivjvTa0H8TQwPO8wvIQcMjpmjGZnj8XF3WQMFPiYc6YlZRtkBEzRNIMMNsmIMgWpMWB2yG6Mc0qZkJRvkx2uNWRSiREpLot8dnp6nlw2zmHArm9s1WJSvNqISe5DwNb2je-SGfafPrwlzofkGUMctivnB_aAL03sw4_bJ1vOthEPfuceebq-esxv0-n9zSS_mKY1UJ2lrOKmclbVDKVyhjqrqwxEVisHEqua18ooWgkrDDgtmFBqWIoKHZVVrTnfIyfru4vgP5YY-_K9iTW2re3QL2MJRmkmwQg10ON_dO6XoRu-G5SRSgquYFCwVnXwMQZ05SI07zZ8lYyWq77Ln77LVd_lb99D6GgdahDxTwCkoqD5N9ekeQc</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Chen, Zexi</creator><creator>Liao, Yiyi</creator><creator>Du, Haozhe</creator><creator>Zhang, Haodong</creator><creator>Xu, Xuecheng</creator><creator>Lu, Haojian</creator><creator>Xiong, Rong</creator><creator>Wang, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6662-3022</orcidid><orcidid>https://orcid.org/0000-0002-0762-6714</orcidid><orcidid>https://orcid.org/0000-0001-9318-9014</orcidid><orcidid>https://orcid.org/0000-0002-0981-935X</orcidid><orcidid>https://orcid.org/0000-0002-9782-6022</orcidid><orcidid>https://orcid.org/0000-0002-9431-7572</orcidid><orcidid>https://orcid.org/0000-0001-5448-6307</orcidid><orcidid>https://orcid.org/0000-0002-1393-3040</orcidid></search><sort><creationdate>20231201</creationdate><title>DPCN++: Differentiable Phase Correlation Network for Versatile Pose Registration</title><author>Chen, Zexi ; Liao, Yiyi ; Du, Haozhe ; Zhang, Haodong ; Xu, Xuecheng ; Lu, Haojian ; Xiong, Rong ; Wang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2079-1b38bfa6c1e56f80fa7b9249c6f25ebc3c6860b4a482f741466bc34bef05bc733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Correlation</topic><topic>Decoupling</topic><topic>differentiable solver</topic><topic>end-to-end learning</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Medical imaging</topic><topic>Pose registration</topic><topic>Registration</topic><topic>Representation learning</topic><topic>Robotics</topic><topic>Rotation</topic><topic>Solvers</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zexi</creatorcontrib><creatorcontrib>Liao, Yiyi</creatorcontrib><creatorcontrib>Du, Haozhe</creatorcontrib><creatorcontrib>Zhang, Haodong</creatorcontrib><creatorcontrib>Xu, Xuecheng</creatorcontrib><creatorcontrib>Lu, Haojian</creatorcontrib><creatorcontrib>Xiong, Rong</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Zexi</au><au>Liao, Yiyi</au><au>Du, Haozhe</au><au>Zhang, Haodong</au><au>Xu, Xuecheng</au><au>Lu, Haojian</au><au>Xiong, Rong</au><au>Wang, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DPCN++: Differentiable Phase Correlation Network for Versatile Pose Registration</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>45</volume><issue>12</issue><spage>14366</spage><epage>14384</epage><pages>14366-14384</pages><issn>0162-8828</issn><eissn>2160-9292</eissn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Pose registration is critical in vision and robotics. This article focuses on the challenging task of initialization-free pose registration up to 7DoF for homogeneous and heterogeneous measurements. While recent learning-based methods show promise using differentiable solvers, they either rely on heuristically defined correspondences or require initialization. Phase correlation seeks solutions in the spectral domain and is correspondence-free and initialization-free. Following this, we propose a differentiable solver and combine it with simple feature extraction networks, namely DPCN++. It can perform registration for homo/hetero inputs and generalizes well on unseen objects. Specifically, the feature extraction networks first learn dense feature grids from a pair of homogeneous/heterogeneous measurements. These feature grids are then transformed into a translation and scale invariant spectrum representation based on Fourier transform and spherical radial aggregation, decoupling translation and scale from rotation. Next, the rotation, scale, and translation are independently and efficiently estimated in the spectrum step-by-step. The entire pipeline is differentiable and trained end-to-end. We evaluate DCPN++ on a wide range of tasks taking different input modalities, including 2D bird's-eye view images, 3D object and scene measurements, and medical images. Experimental results demonstrate that DCPN++ outperforms both classical and learning-based baselines, especially on partially observed and heterogeneous measurements.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>37729564</pmid><doi>10.1109/TPAMI.2023.3317501</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6662-3022</orcidid><orcidid>https://orcid.org/0000-0002-0762-6714</orcidid><orcidid>https://orcid.org/0000-0001-9318-9014</orcidid><orcidid>https://orcid.org/0000-0002-0981-935X</orcidid><orcidid>https://orcid.org/0000-0002-9782-6022</orcidid><orcidid>https://orcid.org/0000-0002-9431-7572</orcidid><orcidid>https://orcid.org/0000-0001-5448-6307</orcidid><orcidid>https://orcid.org/0000-0002-1393-3040</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-12, Vol.45 (12), p.14366-14384 |
issn | 0162-8828 2160-9292 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_2867152846 |
source | IEEE Electronic Library (IEL) |
subjects | Correlation Decoupling differentiable solver end-to-end learning Feature extraction Fourier transforms Learning Learning systems Medical imaging Pose registration Registration Representation learning Robotics Rotation Solvers Task analysis Three-dimensional displays |
title | DPCN++: Differentiable Phase Correlation Network for Versatile Pose Registration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DPCN++:%20Differentiable%20Phase%20Correlation%20Network%20for%20Versatile%20Pose%20Registration&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Chen,%20Zexi&rft.date=2023-12-01&rft.volume=45&rft.issue=12&rft.spage=14366&rft.epage=14384&rft.pages=14366-14384&rft.issn=0162-8828&rft.eissn=2160-9292&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3317501&rft_dat=%3Cproquest_RIE%3E2867152846%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885654362&rft_id=info:pmid/37729564&rft_ieee_id=10256027&rfr_iscdi=true |