DPCN++: Differentiable Phase Correlation Network for Versatile Pose Registration

Pose registration is critical in vision and robotics. This article focuses on the challenging task of initialization-free pose registration up to 7DoF for homogeneous and heterogeneous measurements. While recent learning-based methods show promise using differentiable solvers, they either rely on he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2023-12, Vol.45 (12), p.14366-14384
Hauptverfasser: Chen, Zexi, Liao, Yiyi, Du, Haozhe, Zhang, Haodong, Xu, Xuecheng, Lu, Haojian, Xiong, Rong, Wang, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14384
container_issue 12
container_start_page 14366
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 45
creator Chen, Zexi
Liao, Yiyi
Du, Haozhe
Zhang, Haodong
Xu, Xuecheng
Lu, Haojian
Xiong, Rong
Wang, Yue
description Pose registration is critical in vision and robotics. This article focuses on the challenging task of initialization-free pose registration up to 7DoF for homogeneous and heterogeneous measurements. While recent learning-based methods show promise using differentiable solvers, they either rely on heuristically defined correspondences or require initialization. Phase correlation seeks solutions in the spectral domain and is correspondence-free and initialization-free. Following this, we propose a differentiable solver and combine it with simple feature extraction networks, namely DPCN++. It can perform registration for homo/hetero inputs and generalizes well on unseen objects. Specifically, the feature extraction networks first learn dense feature grids from a pair of homogeneous/heterogeneous measurements. These feature grids are then transformed into a translation and scale invariant spectrum representation based on Fourier transform and spherical radial aggregation, decoupling translation and scale from rotation. Next, the rotation, scale, and translation are independently and efficiently estimated in the spectrum step-by-step. The entire pipeline is differentiable and trained end-to-end. We evaluate DCPN++ on a wide range of tasks taking different input modalities, including 2D bird's-eye view images, 3D object and scene measurements, and medical images. Experimental results demonstrate that DCPN++ outperforms both classical and learning-based baselines, especially on partially observed and heterogeneous measurements.
doi_str_mv 10.1109/TPAMI.2023.3317501
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2867152846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10256027</ieee_id><sourcerecordid>2867152846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2079-1b38bfa6c1e56f80fa7b9249c6f25ebc3c6860b4a482f741466bc34bef05bc733</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFK0ff0A8BLwIkro7-xlvEr8KtQZRr2ETZjU1ZutuivjvTa0H8TQwPO8wvIQcMjpmjGZnj8XF3WQMFPiYc6YlZRtkBEzRNIMMNsmIMgWpMWB2yG6Mc0qZkJRvkx2uNWRSiREpLot8dnp6nlw2zmHArm9s1WJSvNqISe5DwNb2je-SGfafPrwlzofkGUMctivnB_aAL03sw4_bJ1vOthEPfuceebq-esxv0-n9zSS_mKY1UJ2lrOKmclbVDKVyhjqrqwxEVisHEqua18ooWgkrDDgtmFBqWIoKHZVVrTnfIyfru4vgP5YY-_K9iTW2re3QL2MJRmkmwQg10ON_dO6XoRu-G5SRSgquYFCwVnXwMQZ05SI07zZ8lYyWq77Ln77LVd_lb99D6GgdahDxTwCkoqD5N9ekeQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885654362</pqid></control><display><type>article</type><title>DPCN++: Differentiable Phase Correlation Network for Versatile Pose Registration</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Zexi ; Liao, Yiyi ; Du, Haozhe ; Zhang, Haodong ; Xu, Xuecheng ; Lu, Haojian ; Xiong, Rong ; Wang, Yue</creator><creatorcontrib>Chen, Zexi ; Liao, Yiyi ; Du, Haozhe ; Zhang, Haodong ; Xu, Xuecheng ; Lu, Haojian ; Xiong, Rong ; Wang, Yue</creatorcontrib><description>Pose registration is critical in vision and robotics. This article focuses on the challenging task of initialization-free pose registration up to 7DoF for homogeneous and heterogeneous measurements. While recent learning-based methods show promise using differentiable solvers, they either rely on heuristically defined correspondences or require initialization. Phase correlation seeks solutions in the spectral domain and is correspondence-free and initialization-free. Following this, we propose a differentiable solver and combine it with simple feature extraction networks, namely DPCN++. It can perform registration for homo/hetero inputs and generalizes well on unseen objects. Specifically, the feature extraction networks first learn dense feature grids from a pair of homogeneous/heterogeneous measurements. These feature grids are then transformed into a translation and scale invariant spectrum representation based on Fourier transform and spherical radial aggregation, decoupling translation and scale from rotation. Next, the rotation, scale, and translation are independently and efficiently estimated in the spectrum step-by-step. The entire pipeline is differentiable and trained end-to-end. We evaluate DCPN++ on a wide range of tasks taking different input modalities, including 2D bird's-eye view images, 3D object and scene measurements, and medical images. Experimental results demonstrate that DCPN++ outperforms both classical and learning-based baselines, especially on partially observed and heterogeneous measurements.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 2160-9292</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2023.3317501</identifier><identifier>PMID: 37729564</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Correlation ; Decoupling ; differentiable solver ; end-to-end learning ; Feature extraction ; Fourier transforms ; Learning ; Learning systems ; Medical imaging ; Pose registration ; Registration ; Representation learning ; Robotics ; Rotation ; Solvers ; Task analysis ; Three-dimensional displays</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-12, Vol.45 (12), p.14366-14384</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2079-1b38bfa6c1e56f80fa7b9249c6f25ebc3c6860b4a482f741466bc34bef05bc733</citedby><cites>FETCH-LOGICAL-c2079-1b38bfa6c1e56f80fa7b9249c6f25ebc3c6860b4a482f741466bc34bef05bc733</cites><orcidid>0000-0001-6662-3022 ; 0000-0002-0762-6714 ; 0000-0001-9318-9014 ; 0000-0002-0981-935X ; 0000-0002-9782-6022 ; 0000-0002-9431-7572 ; 0000-0001-5448-6307 ; 0000-0002-1393-3040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10256027$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10256027$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Zexi</creatorcontrib><creatorcontrib>Liao, Yiyi</creatorcontrib><creatorcontrib>Du, Haozhe</creatorcontrib><creatorcontrib>Zhang, Haodong</creatorcontrib><creatorcontrib>Xu, Xuecheng</creatorcontrib><creatorcontrib>Lu, Haojian</creatorcontrib><creatorcontrib>Xiong, Rong</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><title>DPCN++: Differentiable Phase Correlation Network for Versatile Pose Registration</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Pose registration is critical in vision and robotics. This article focuses on the challenging task of initialization-free pose registration up to 7DoF for homogeneous and heterogeneous measurements. While recent learning-based methods show promise using differentiable solvers, they either rely on heuristically defined correspondences or require initialization. Phase correlation seeks solutions in the spectral domain and is correspondence-free and initialization-free. Following this, we propose a differentiable solver and combine it with simple feature extraction networks, namely DPCN++. It can perform registration for homo/hetero inputs and generalizes well on unseen objects. Specifically, the feature extraction networks first learn dense feature grids from a pair of homogeneous/heterogeneous measurements. These feature grids are then transformed into a translation and scale invariant spectrum representation based on Fourier transform and spherical radial aggregation, decoupling translation and scale from rotation. Next, the rotation, scale, and translation are independently and efficiently estimated in the spectrum step-by-step. The entire pipeline is differentiable and trained end-to-end. We evaluate DCPN++ on a wide range of tasks taking different input modalities, including 2D bird's-eye view images, 3D object and scene measurements, and medical images. Experimental results demonstrate that DCPN++ outperforms both classical and learning-based baselines, especially on partially observed and heterogeneous measurements.</description><subject>Correlation</subject><subject>Decoupling</subject><subject>differentiable solver</subject><subject>end-to-end learning</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Medical imaging</subject><subject>Pose registration</subject><subject>Registration</subject><subject>Representation learning</subject><subject>Robotics</subject><subject>Rotation</subject><subject>Solvers</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><issn>0162-8828</issn><issn>2160-9292</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0E1Lw0AQBuBFFK0ff0A8BLwIkro7-xlvEr8KtQZRr2ETZjU1ZutuivjvTa0H8TQwPO8wvIQcMjpmjGZnj8XF3WQMFPiYc6YlZRtkBEzRNIMMNsmIMgWpMWB2yG6Mc0qZkJRvkx2uNWRSiREpLot8dnp6nlw2zmHArm9s1WJSvNqISe5DwNb2je-SGfafPrwlzofkGUMctivnB_aAL03sw4_bJ1vOthEPfuceebq-esxv0-n9zSS_mKY1UJ2lrOKmclbVDKVyhjqrqwxEVisHEqua18ooWgkrDDgtmFBqWIoKHZVVrTnfIyfru4vgP5YY-_K9iTW2re3QL2MJRmkmwQg10ON_dO6XoRu-G5SRSgquYFCwVnXwMQZ05SI07zZ8lYyWq77Ln77LVd_lb99D6GgdahDxTwCkoqD5N9ekeQc</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Chen, Zexi</creator><creator>Liao, Yiyi</creator><creator>Du, Haozhe</creator><creator>Zhang, Haodong</creator><creator>Xu, Xuecheng</creator><creator>Lu, Haojian</creator><creator>Xiong, Rong</creator><creator>Wang, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6662-3022</orcidid><orcidid>https://orcid.org/0000-0002-0762-6714</orcidid><orcidid>https://orcid.org/0000-0001-9318-9014</orcidid><orcidid>https://orcid.org/0000-0002-0981-935X</orcidid><orcidid>https://orcid.org/0000-0002-9782-6022</orcidid><orcidid>https://orcid.org/0000-0002-9431-7572</orcidid><orcidid>https://orcid.org/0000-0001-5448-6307</orcidid><orcidid>https://orcid.org/0000-0002-1393-3040</orcidid></search><sort><creationdate>20231201</creationdate><title>DPCN++: Differentiable Phase Correlation Network for Versatile Pose Registration</title><author>Chen, Zexi ; Liao, Yiyi ; Du, Haozhe ; Zhang, Haodong ; Xu, Xuecheng ; Lu, Haojian ; Xiong, Rong ; Wang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2079-1b38bfa6c1e56f80fa7b9249c6f25ebc3c6860b4a482f741466bc34bef05bc733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Correlation</topic><topic>Decoupling</topic><topic>differentiable solver</topic><topic>end-to-end learning</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Medical imaging</topic><topic>Pose registration</topic><topic>Registration</topic><topic>Representation learning</topic><topic>Robotics</topic><topic>Rotation</topic><topic>Solvers</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zexi</creatorcontrib><creatorcontrib>Liao, Yiyi</creatorcontrib><creatorcontrib>Du, Haozhe</creatorcontrib><creatorcontrib>Zhang, Haodong</creatorcontrib><creatorcontrib>Xu, Xuecheng</creatorcontrib><creatorcontrib>Lu, Haojian</creatorcontrib><creatorcontrib>Xiong, Rong</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Zexi</au><au>Liao, Yiyi</au><au>Du, Haozhe</au><au>Zhang, Haodong</au><au>Xu, Xuecheng</au><au>Lu, Haojian</au><au>Xiong, Rong</au><au>Wang, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DPCN++: Differentiable Phase Correlation Network for Versatile Pose Registration</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>45</volume><issue>12</issue><spage>14366</spage><epage>14384</epage><pages>14366-14384</pages><issn>0162-8828</issn><eissn>2160-9292</eissn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Pose registration is critical in vision and robotics. This article focuses on the challenging task of initialization-free pose registration up to 7DoF for homogeneous and heterogeneous measurements. While recent learning-based methods show promise using differentiable solvers, they either rely on heuristically defined correspondences or require initialization. Phase correlation seeks solutions in the spectral domain and is correspondence-free and initialization-free. Following this, we propose a differentiable solver and combine it with simple feature extraction networks, namely DPCN++. It can perform registration for homo/hetero inputs and generalizes well on unseen objects. Specifically, the feature extraction networks first learn dense feature grids from a pair of homogeneous/heterogeneous measurements. These feature grids are then transformed into a translation and scale invariant spectrum representation based on Fourier transform and spherical radial aggregation, decoupling translation and scale from rotation. Next, the rotation, scale, and translation are independently and efficiently estimated in the spectrum step-by-step. The entire pipeline is differentiable and trained end-to-end. We evaluate DCPN++ on a wide range of tasks taking different input modalities, including 2D bird's-eye view images, 3D object and scene measurements, and medical images. Experimental results demonstrate that DCPN++ outperforms both classical and learning-based baselines, especially on partially observed and heterogeneous measurements.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>37729564</pmid><doi>10.1109/TPAMI.2023.3317501</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6662-3022</orcidid><orcidid>https://orcid.org/0000-0002-0762-6714</orcidid><orcidid>https://orcid.org/0000-0001-9318-9014</orcidid><orcidid>https://orcid.org/0000-0002-0981-935X</orcidid><orcidid>https://orcid.org/0000-0002-9782-6022</orcidid><orcidid>https://orcid.org/0000-0002-9431-7572</orcidid><orcidid>https://orcid.org/0000-0001-5448-6307</orcidid><orcidid>https://orcid.org/0000-0002-1393-3040</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2023-12, Vol.45 (12), p.14366-14384
issn 0162-8828
2160-9292
1939-3539
language eng
recordid cdi_proquest_miscellaneous_2867152846
source IEEE Electronic Library (IEL)
subjects Correlation
Decoupling
differentiable solver
end-to-end learning
Feature extraction
Fourier transforms
Learning
Learning systems
Medical imaging
Pose registration
Registration
Representation learning
Robotics
Rotation
Solvers
Task analysis
Three-dimensional displays
title DPCN++: Differentiable Phase Correlation Network for Versatile Pose Registration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DPCN++:%20Differentiable%20Phase%20Correlation%20Network%20for%20Versatile%20Pose%20Registration&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Chen,%20Zexi&rft.date=2023-12-01&rft.volume=45&rft.issue=12&rft.spage=14366&rft.epage=14384&rft.pages=14366-14384&rft.issn=0162-8828&rft.eissn=2160-9292&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3317501&rft_dat=%3Cproquest_RIE%3E2867152846%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885654362&rft_id=info:pmid/37729564&rft_ieee_id=10256027&rfr_iscdi=true