Thermal power prediction of nuclear power plant using neural network and parity space model

A power prediction system was developed using an artificial neural network paradigm that was combined with a parity space signal validation technique. The parity space signal validation algorithm for input preprocessing and a backpropagation network algorithm for network learning are used for the po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 1991-04, Vol.38 (2), p.866-872
Hauptverfasser: Roh Myung-Sub, Cheon Se-Woo, Chang Soon-Heung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 872
container_issue 2
container_start_page 866
container_title IEEE transactions on nuclear science
container_volume 38
creator Roh Myung-Sub
Cheon Se-Woo
Chang Soon-Heung
description A power prediction system was developed using an artificial neural network paradigm that was combined with a parity space signal validation technique. The parity space signal validation algorithm for input preprocessing and a backpropagation network algorithm for network learning are used for the power prediction system. Case studies were performed with emphasis on the applicability of the network in a steady-state high-power level. The studies reveal that these algorithms can precisely predict the thermal power in a nuclear power plant. They also show that the error signals resulting from instrumentation problems can be properly treated even when the signals comprising various patterns are noisy or incomplete.< >
doi_str_mv 10.1109/23.289402
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28664589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>289402</ieee_id><sourcerecordid>28664589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-eb9035c1ef6839c5d89d7f6b794df67bf6a4b9b05db914320da8110ea023fd783</originalsourceid><addsrcrecordid>eNo9kM1LHTEUxUNpoa_WRbeugojQxdhk8jHJsojagtCNXbkImeRGU-cl0ySD-N93yjxdXS7ndw6cg9AXSi4oJfpbzy56pTnp36EdFUJ1VAzqPdoRQlWnudYf0ada_6wvF0Ts0P3dI5S9nfCcn6HguYCPrsWccA44LW4CW161yaaGlxrTA06wlNWUoD3n8oRt8ni2JbYXXGfrAO-zh-kz-hDsVOH4cI_Q7-uru8sf3e2vm5-X3287xxhrHYyaMOEoBKmYdsIr7Ycgx0FzH-QwBmn5qEci_KgpZz3xVq1dwZKeBT8odoROt9xcWzTVxQbu0eWUwDUjyKDlQFbofIPmkv8uUJvZx-pgWktBXqrplZRcKL2CXzfQlVxrgWDmEve2vBhKzP-NTc_MtvHKnh1CbXV2CsUmF-ubgWspieQrdrJhEQDe1EPGPxxFg9o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28664589</pqid></control><display><type>article</type><title>Thermal power prediction of nuclear power plant using neural network and parity space model</title><source>IEEE Electronic Library (IEL)</source><creator>Roh Myung-Sub ; Cheon Se-Woo ; Chang Soon-Heung</creator><creatorcontrib>Roh Myung-Sub ; Cheon Se-Woo ; Chang Soon-Heung</creatorcontrib><description>A power prediction system was developed using an artificial neural network paradigm that was combined with a parity space signal validation technique. The parity space signal validation algorithm for input preprocessing and a backpropagation network algorithm for network learning are used for the power prediction system. Case studies were performed with emphasis on the applicability of the network in a steady-state high-power level. The studies reveal that these algorithms can precisely predict the thermal power in a nuclear power plant. They also show that the error signals resulting from instrumentation problems can be properly treated even when the signals comprising various patterns are noisy or incomplete.&lt; &gt;</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/23.289402</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>220100 - Nuclear Reactor Technology- Theory &amp; Calculation ; 990200 - Mathematics &amp; Computers ; ALGORITHMS ; Applied sciences ; Artificial neural networks ; Backpropagation algorithms ; Biological neural networks ; Data preprocessing ; Energy ; Energy. Thermal use of fuels ; EQUATIONS ; Exact sciences and technology ; Fission nuclear power plants ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; GENERAL STUDIES OF NUCLEAR REACTORS ; HEAT RATE ; Installations for energy generation and conversion: thermal and electrical energy ; MATHEMATICAL LOGIC ; NEURAL NETWORKS ; NUCLEAR FACILITIES ; NUCLEAR POWER PLANTS ; OPERATION ; Power generation ; POWER PLANTS ; Power system modeling ; PREDICTION EQUATIONS ; Predictive models ; REACTOR INSTRUMENTATION ; REACTOR OPERATION ; Steady-state ; STEADY-STATE CONDITIONS ; THERMAL POWER PLANTS</subject><ispartof>IEEE transactions on nuclear science, 1991-04, Vol.38 (2), p.866-872</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-eb9035c1ef6839c5d89d7f6b794df67bf6a4b9b05db914320da8110ea023fd783</citedby><cites>FETCH-LOGICAL-c333t-eb9035c1ef6839c5d89d7f6b794df67bf6a4b9b05db914320da8110ea023fd783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/289402$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/289402$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4966064$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5079670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Roh Myung-Sub</creatorcontrib><creatorcontrib>Cheon Se-Woo</creatorcontrib><creatorcontrib>Chang Soon-Heung</creatorcontrib><title>Thermal power prediction of nuclear power plant using neural network and parity space model</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>A power prediction system was developed using an artificial neural network paradigm that was combined with a parity space signal validation technique. The parity space signal validation algorithm for input preprocessing and a backpropagation network algorithm for network learning are used for the power prediction system. Case studies were performed with emphasis on the applicability of the network in a steady-state high-power level. The studies reveal that these algorithms can precisely predict the thermal power in a nuclear power plant. They also show that the error signals resulting from instrumentation problems can be properly treated even when the signals comprising various patterns are noisy or incomplete.&lt; &gt;</description><subject>220100 - Nuclear Reactor Technology- Theory &amp; Calculation</subject><subject>990200 - Mathematics &amp; Computers</subject><subject>ALGORITHMS</subject><subject>Applied sciences</subject><subject>Artificial neural networks</subject><subject>Backpropagation algorithms</subject><subject>Biological neural networks</subject><subject>Data preprocessing</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>GENERAL STUDIES OF NUCLEAR REACTORS</subject><subject>HEAT RATE</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>MATHEMATICAL LOGIC</subject><subject>NEURAL NETWORKS</subject><subject>NUCLEAR FACILITIES</subject><subject>NUCLEAR POWER PLANTS</subject><subject>OPERATION</subject><subject>Power generation</subject><subject>POWER PLANTS</subject><subject>Power system modeling</subject><subject>PREDICTION EQUATIONS</subject><subject>Predictive models</subject><subject>REACTOR INSTRUMENTATION</subject><subject>REACTOR OPERATION</subject><subject>Steady-state</subject><subject>STEADY-STATE CONDITIONS</subject><subject>THERMAL POWER PLANTS</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LHTEUxUNpoa_WRbeugojQxdhk8jHJsojagtCNXbkImeRGU-cl0ySD-N93yjxdXS7ndw6cg9AXSi4oJfpbzy56pTnp36EdFUJ1VAzqPdoRQlWnudYf0ada_6wvF0Ts0P3dI5S9nfCcn6HguYCPrsWccA44LW4CW161yaaGlxrTA06wlNWUoD3n8oRt8ni2JbYXXGfrAO-zh-kz-hDsVOH4cI_Q7-uru8sf3e2vm5-X3287xxhrHYyaMOEoBKmYdsIr7Ycgx0FzH-QwBmn5qEci_KgpZz3xVq1dwZKeBT8odoROt9xcWzTVxQbu0eWUwDUjyKDlQFbofIPmkv8uUJvZx-pgWktBXqrplZRcKL2CXzfQlVxrgWDmEve2vBhKzP-NTc_MtvHKnh1CbXV2CsUmF-ubgWspieQrdrJhEQDe1EPGPxxFg9o</recordid><startdate>19910401</startdate><enddate>19910401</enddate><creator>Roh Myung-Sub</creator><creator>Cheon Se-Woo</creator><creator>Chang Soon-Heung</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19910401</creationdate><title>Thermal power prediction of nuclear power plant using neural network and parity space model</title><author>Roh Myung-Sub ; Cheon Se-Woo ; Chang Soon-Heung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-eb9035c1ef6839c5d89d7f6b794df67bf6a4b9b05db914320da8110ea023fd783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>220100 - Nuclear Reactor Technology- Theory &amp; Calculation</topic><topic>990200 - Mathematics &amp; Computers</topic><topic>ALGORITHMS</topic><topic>Applied sciences</topic><topic>Artificial neural networks</topic><topic>Backpropagation algorithms</topic><topic>Biological neural networks</topic><topic>Data preprocessing</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>GENERAL STUDIES OF NUCLEAR REACTORS</topic><topic>HEAT RATE</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>MATHEMATICAL LOGIC</topic><topic>NEURAL NETWORKS</topic><topic>NUCLEAR FACILITIES</topic><topic>NUCLEAR POWER PLANTS</topic><topic>OPERATION</topic><topic>Power generation</topic><topic>POWER PLANTS</topic><topic>Power system modeling</topic><topic>PREDICTION EQUATIONS</topic><topic>Predictive models</topic><topic>REACTOR INSTRUMENTATION</topic><topic>REACTOR OPERATION</topic><topic>Steady-state</topic><topic>STEADY-STATE CONDITIONS</topic><topic>THERMAL POWER PLANTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roh Myung-Sub</creatorcontrib><creatorcontrib>Cheon Se-Woo</creatorcontrib><creatorcontrib>Chang Soon-Heung</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roh Myung-Sub</au><au>Cheon Se-Woo</au><au>Chang Soon-Heung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal power prediction of nuclear power plant using neural network and parity space model</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>1991-04-01</date><risdate>1991</risdate><volume>38</volume><issue>2</issue><spage>866</spage><epage>872</epage><pages>866-872</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>A power prediction system was developed using an artificial neural network paradigm that was combined with a parity space signal validation technique. The parity space signal validation algorithm for input preprocessing and a backpropagation network algorithm for network learning are used for the power prediction system. Case studies were performed with emphasis on the applicability of the network in a steady-state high-power level. The studies reveal that these algorithms can precisely predict the thermal power in a nuclear power plant. They also show that the error signals resulting from instrumentation problems can be properly treated even when the signals comprising various patterns are noisy or incomplete.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/23.289402</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 1991-04, Vol.38 (2), p.866-872
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_miscellaneous_28664589
source IEEE Electronic Library (IEL)
subjects 220100 - Nuclear Reactor Technology- Theory & Calculation
990200 - Mathematics & Computers
ALGORITHMS
Applied sciences
Artificial neural networks
Backpropagation algorithms
Biological neural networks
Data preprocessing
Energy
Energy. Thermal use of fuels
EQUATIONS
Exact sciences and technology
Fission nuclear power plants
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
GENERAL STUDIES OF NUCLEAR REACTORS
HEAT RATE
Installations for energy generation and conversion: thermal and electrical energy
MATHEMATICAL LOGIC
NEURAL NETWORKS
NUCLEAR FACILITIES
NUCLEAR POWER PLANTS
OPERATION
Power generation
POWER PLANTS
Power system modeling
PREDICTION EQUATIONS
Predictive models
REACTOR INSTRUMENTATION
REACTOR OPERATION
Steady-state
STEADY-STATE CONDITIONS
THERMAL POWER PLANTS
title Thermal power prediction of nuclear power plant using neural network and parity space model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20power%20prediction%20of%20nuclear%20power%20plant%20using%20neural%20network%20and%20parity%20space%20model&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Roh%20Myung-Sub&rft.date=1991-04-01&rft.volume=38&rft.issue=2&rft.spage=866&rft.epage=872&rft.pages=866-872&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/23.289402&rft_dat=%3Cproquest_RIE%3E28664589%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28664589&rft_id=info:pmid/&rft_ieee_id=289402&rfr_iscdi=true