Thermal power prediction of nuclear power plant using neural network and parity space model
A power prediction system was developed using an artificial neural network paradigm that was combined with a parity space signal validation technique. The parity space signal validation algorithm for input preprocessing and a backpropagation network algorithm for network learning are used for the po...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 1991-04, Vol.38 (2), p.866-872 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A power prediction system was developed using an artificial neural network paradigm that was combined with a parity space signal validation technique. The parity space signal validation algorithm for input preprocessing and a backpropagation network algorithm for network learning are used for the power prediction system. Case studies were performed with emphasis on the applicability of the network in a steady-state high-power level. The studies reveal that these algorithms can precisely predict the thermal power in a nuclear power plant. They also show that the error signals resulting from instrumentation problems can be properly treated even when the signals comprising various patterns are noisy or incomplete.< > |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/23.289402 |