A learning approach to enhancing machine reconfiguration decision-making games in a heterarchical manufacturing environment
Business process management (BPM) emerges as a promising guiding principle and technology for integrating existing assets and future deployments. BPM provides mechanisms to transform the behaviours of disparate and heterogeneous systems into standard and interoperable business processes, aimed at ef...
Gespeichert in:
Veröffentlicht in: | International journal of production research 2005-10, Vol.43 (20), p.4321-4334 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4334 |
---|---|
container_issue | 20 |
container_start_page | 4321 |
container_title | International journal of production research |
container_volume | 43 |
creator | McDonnell, P. Joshi, S. Qiu, R. G. |
description | Business process management (BPM) emerges as a promising guiding principle and technology for integrating existing assets and future deployments. BPM provides mechanisms to transform the behaviours of disparate and heterogeneous systems into standard and interoperable business processes, aimed at effectively facilitating the conduct of factory system integration. On the shop floor, BPM requires machine-level controllers to be architected in a heterarchical fashion. Past work by the authors introduced a heuristic non-cooperative game theoretic planning technique for an autonomous machine controller to frame a decision about an impending reconfiguration (i.e. setup change) in a heterarchical manufacturing environment. The work described in this paper extends the authors' previous work by employing a reinforcement learning approach for specifying the payoffs in reconfiguration games through capturing the effects of a sequence of reconfiguration decisions. Consequently, the controller can autonomously learn the long-term implications of decisions, and ultimately improve its decision-making process in manufacturing. |
doi_str_mv | 10.1080/00207540500142431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_28663862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>915794821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8394ebfc40d0b65e0176f92513881f13e26387b9da61fdca7d3866dce08defd43</originalsourceid><addsrcrecordid>eNqFkU1v3CAQQFHUSt0m-QG9oR56cwrGxqzUSxQ1H1KkXlopNzQLwy6JDVvATaP8-WJtT42icgHNvDcwDCEfODvjTLHPjLVs6DvWM8a7thP8iKy4kLLplbp7Q1ZLvqmAeEfe53zP6upVtyLP53RESMGHLYX9PkUwO1oixbCDYJboVCM-IE1oYnB-OycoPgZq0fhcD80EDwu3hQkz9YEC3WHBBKl6BsZaIMwOTJnTgmH45VMME4ZyQt46GDOe_t2PyY_Lr98vrpvbb1c3F-e3jRGiK40S6w43znTMso3skfFBunXbc6EUd1xgK4UaNmsLkjtrYLBCSWkNMmXR2U4ck0-HurW9nzPmoiefDY4jBIxz1m3Fq9JW8OM_4H2cU6hv0y1XUvRyvUD8AJkUc07o9D75CdKT5kwvs9AvZlGd4eD44GKa4DGm0eoCT2NMLi0fnV9auvwu1fzyX1O8fvEfl-ijcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218635692</pqid></control><display><type>article</type><title>A learning approach to enhancing machine reconfiguration decision-making games in a heterarchical manufacturing environment</title><source>Business Source Complete</source><source>Taylor & Francis Journals Complete</source><creator>McDonnell, P. ; Joshi, S. ; Qiu, R. G.</creator><creatorcontrib>McDonnell, P. ; Joshi, S. ; Qiu, R. G.</creatorcontrib><description>Business process management (BPM) emerges as a promising guiding principle and technology for integrating existing assets and future deployments. BPM provides mechanisms to transform the behaviours of disparate and heterogeneous systems into standard and interoperable business processes, aimed at effectively facilitating the conduct of factory system integration. On the shop floor, BPM requires machine-level controllers to be architected in a heterarchical fashion. Past work by the authors introduced a heuristic non-cooperative game theoretic planning technique for an autonomous machine controller to frame a decision about an impending reconfiguration (i.e. setup change) in a heterarchical manufacturing environment. The work described in this paper extends the authors' previous work by employing a reinforcement learning approach for specifying the payoffs in reconfiguration games through capturing the effects of a sequence of reconfiguration decisions. Consequently, the controller can autonomously learn the long-term implications of decisions, and ultimately improve its decision-making process in manufacturing.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207540500142431</identifier><language>eng</language><publisher>London: Taylor & Francis Group</publisher><subject>Business process reengineering ; Controllers ; Decision making ; Game theory ; Heterarchical manufacturing ; Integrated approach ; Machine setup ; Manufacturing ; Reconfiguration decision ; Studies</subject><ispartof>International journal of production research, 2005-10, Vol.43 (20), p.4321-4334</ispartof><rights>Copyright Taylor & Francis Group, LLC 2005</rights><rights>Copyright Taylor & Francis Group Oct 15, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8394ebfc40d0b65e0176f92513881f13e26387b9da61fdca7d3866dce08defd43</citedby><cites>FETCH-LOGICAL-c334t-8394ebfc40d0b65e0176f92513881f13e26387b9da61fdca7d3866dce08defd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207540500142431$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207540500142431$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>McDonnell, P.</creatorcontrib><creatorcontrib>Joshi, S.</creatorcontrib><creatorcontrib>Qiu, R. G.</creatorcontrib><title>A learning approach to enhancing machine reconfiguration decision-making games in a heterarchical manufacturing environment</title><title>International journal of production research</title><description>Business process management (BPM) emerges as a promising guiding principle and technology for integrating existing assets and future deployments. BPM provides mechanisms to transform the behaviours of disparate and heterogeneous systems into standard and interoperable business processes, aimed at effectively facilitating the conduct of factory system integration. On the shop floor, BPM requires machine-level controllers to be architected in a heterarchical fashion. Past work by the authors introduced a heuristic non-cooperative game theoretic planning technique for an autonomous machine controller to frame a decision about an impending reconfiguration (i.e. setup change) in a heterarchical manufacturing environment. The work described in this paper extends the authors' previous work by employing a reinforcement learning approach for specifying the payoffs in reconfiguration games through capturing the effects of a sequence of reconfiguration decisions. Consequently, the controller can autonomously learn the long-term implications of decisions, and ultimately improve its decision-making process in manufacturing.</description><subject>Business process reengineering</subject><subject>Controllers</subject><subject>Decision making</subject><subject>Game theory</subject><subject>Heterarchical manufacturing</subject><subject>Integrated approach</subject><subject>Machine setup</subject><subject>Manufacturing</subject><subject>Reconfiguration decision</subject><subject>Studies</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v3CAQQFHUSt0m-QG9oR56cwrGxqzUSxQ1H1KkXlopNzQLwy6JDVvATaP8-WJtT42icgHNvDcwDCEfODvjTLHPjLVs6DvWM8a7thP8iKy4kLLplbp7Q1ZLvqmAeEfe53zP6upVtyLP53RESMGHLYX9PkUwO1oixbCDYJboVCM-IE1oYnB-OycoPgZq0fhcD80EDwu3hQkz9YEC3WHBBKl6BsZaIMwOTJnTgmH45VMME4ZyQt46GDOe_t2PyY_Lr98vrpvbb1c3F-e3jRGiK40S6w43znTMso3skfFBunXbc6EUd1xgK4UaNmsLkjtrYLBCSWkNMmXR2U4ck0-HurW9nzPmoiefDY4jBIxz1m3Fq9JW8OM_4H2cU6hv0y1XUvRyvUD8AJkUc07o9D75CdKT5kwvs9AvZlGd4eD44GKa4DGm0eoCT2NMLi0fnV9auvwu1fzyX1O8fvEfl-ijcA</recordid><startdate>20051015</startdate><enddate>20051015</enddate><creator>McDonnell, P.</creator><creator>Joshi, S.</creator><creator>Qiu, R. G.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>7U5</scope></search><sort><creationdate>20051015</creationdate><title>A learning approach to enhancing machine reconfiguration decision-making games in a heterarchical manufacturing environment</title><author>McDonnell, P. ; Joshi, S. ; Qiu, R. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8394ebfc40d0b65e0176f92513881f13e26387b9da61fdca7d3866dce08defd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Business process reengineering</topic><topic>Controllers</topic><topic>Decision making</topic><topic>Game theory</topic><topic>Heterarchical manufacturing</topic><topic>Integrated approach</topic><topic>Machine setup</topic><topic>Manufacturing</topic><topic>Reconfiguration decision</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDonnell, P.</creatorcontrib><creatorcontrib>Joshi, S.</creatorcontrib><creatorcontrib>Qiu, R. G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDonnell, P.</au><au>Joshi, S.</au><au>Qiu, R. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A learning approach to enhancing machine reconfiguration decision-making games in a heterarchical manufacturing environment</atitle><jtitle>International journal of production research</jtitle><date>2005-10-15</date><risdate>2005</risdate><volume>43</volume><issue>20</issue><spage>4321</spage><epage>4334</epage><pages>4321-4334</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>Business process management (BPM) emerges as a promising guiding principle and technology for integrating existing assets and future deployments. BPM provides mechanisms to transform the behaviours of disparate and heterogeneous systems into standard and interoperable business processes, aimed at effectively facilitating the conduct of factory system integration. On the shop floor, BPM requires machine-level controllers to be architected in a heterarchical fashion. Past work by the authors introduced a heuristic non-cooperative game theoretic planning technique for an autonomous machine controller to frame a decision about an impending reconfiguration (i.e. setup change) in a heterarchical manufacturing environment. The work described in this paper extends the authors' previous work by employing a reinforcement learning approach for specifying the payoffs in reconfiguration games through capturing the effects of a sequence of reconfiguration decisions. Consequently, the controller can autonomously learn the long-term implications of decisions, and ultimately improve its decision-making process in manufacturing.</abstract><cop>London</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00207540500142431</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2005-10, Vol.43 (20), p.4321-4334 |
issn | 0020-7543 1366-588X |
language | eng |
recordid | cdi_proquest_miscellaneous_28663862 |
source | Business Source Complete; Taylor & Francis Journals Complete |
subjects | Business process reengineering Controllers Decision making Game theory Heterarchical manufacturing Integrated approach Machine setup Manufacturing Reconfiguration decision Studies |
title | A learning approach to enhancing machine reconfiguration decision-making games in a heterarchical manufacturing environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20learning%20approach%20to%20enhancing%20machine%20reconfiguration%20decision-making%20games%20in%20a%20heterarchical%20manufacturing%20environment&rft.jtitle=International%20journal%20of%20production%20research&rft.au=McDonnell,%20P.&rft.date=2005-10-15&rft.volume=43&rft.issue=20&rft.spage=4321&rft.epage=4334&rft.pages=4321-4334&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207540500142431&rft_dat=%3Cproquest_infor%3E915794821%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218635692&rft_id=info:pmid/&rfr_iscdi=true |