A learning approach to enhancing machine reconfiguration decision-making games in a heterarchical manufacturing environment

Business process management (BPM) emerges as a promising guiding principle and technology for integrating existing assets and future deployments. BPM provides mechanisms to transform the behaviours of disparate and heterogeneous systems into standard and interoperable business processes, aimed at ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2005-10, Vol.43 (20), p.4321-4334
Hauptverfasser: McDonnell, P., Joshi, S., Qiu, R. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4334
container_issue 20
container_start_page 4321
container_title International journal of production research
container_volume 43
creator McDonnell, P.
Joshi, S.
Qiu, R. G.
description Business process management (BPM) emerges as a promising guiding principle and technology for integrating existing assets and future deployments. BPM provides mechanisms to transform the behaviours of disparate and heterogeneous systems into standard and interoperable business processes, aimed at effectively facilitating the conduct of factory system integration. On the shop floor, BPM requires machine-level controllers to be architected in a heterarchical fashion. Past work by the authors introduced a heuristic non-cooperative game theoretic planning technique for an autonomous machine controller to frame a decision about an impending reconfiguration (i.e. setup change) in a heterarchical manufacturing environment. The work described in this paper extends the authors' previous work by employing a reinforcement learning approach for specifying the payoffs in reconfiguration games through capturing the effects of a sequence of reconfiguration decisions. Consequently, the controller can autonomously learn the long-term implications of decisions, and ultimately improve its decision-making process in manufacturing.
doi_str_mv 10.1080/00207540500142431
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_28663862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>915794821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8394ebfc40d0b65e0176f92513881f13e26387b9da61fdca7d3866dce08defd43</originalsourceid><addsrcrecordid>eNqFkU1v3CAQQFHUSt0m-QG9oR56cwrGxqzUSxQ1H1KkXlopNzQLwy6JDVvATaP8-WJtT42icgHNvDcwDCEfODvjTLHPjLVs6DvWM8a7thP8iKy4kLLplbp7Q1ZLvqmAeEfe53zP6upVtyLP53RESMGHLYX9PkUwO1oixbCDYJboVCM-IE1oYnB-OycoPgZq0fhcD80EDwu3hQkz9YEC3WHBBKl6BsZaIMwOTJnTgmH45VMME4ZyQt46GDOe_t2PyY_Lr98vrpvbb1c3F-e3jRGiK40S6w43znTMso3skfFBunXbc6EUd1xgK4UaNmsLkjtrYLBCSWkNMmXR2U4ck0-HurW9nzPmoiefDY4jBIxz1m3Fq9JW8OM_4H2cU6hv0y1XUvRyvUD8AJkUc07o9D75CdKT5kwvs9AvZlGd4eD44GKa4DGm0eoCT2NMLi0fnV9auvwu1fzyX1O8fvEfl-ijcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218635692</pqid></control><display><type>article</type><title>A learning approach to enhancing machine reconfiguration decision-making games in a heterarchical manufacturing environment</title><source>Business Source Complete</source><source>Taylor &amp; Francis Journals Complete</source><creator>McDonnell, P. ; Joshi, S. ; Qiu, R. G.</creator><creatorcontrib>McDonnell, P. ; Joshi, S. ; Qiu, R. G.</creatorcontrib><description>Business process management (BPM) emerges as a promising guiding principle and technology for integrating existing assets and future deployments. BPM provides mechanisms to transform the behaviours of disparate and heterogeneous systems into standard and interoperable business processes, aimed at effectively facilitating the conduct of factory system integration. On the shop floor, BPM requires machine-level controllers to be architected in a heterarchical fashion. Past work by the authors introduced a heuristic non-cooperative game theoretic planning technique for an autonomous machine controller to frame a decision about an impending reconfiguration (i.e. setup change) in a heterarchical manufacturing environment. The work described in this paper extends the authors' previous work by employing a reinforcement learning approach for specifying the payoffs in reconfiguration games through capturing the effects of a sequence of reconfiguration decisions. Consequently, the controller can autonomously learn the long-term implications of decisions, and ultimately improve its decision-making process in manufacturing.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207540500142431</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Business process reengineering ; Controllers ; Decision making ; Game theory ; Heterarchical manufacturing ; Integrated approach ; Machine setup ; Manufacturing ; Reconfiguration decision ; Studies</subject><ispartof>International journal of production research, 2005-10, Vol.43 (20), p.4321-4334</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2005</rights><rights>Copyright Taylor &amp; Francis Group Oct 15, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8394ebfc40d0b65e0176f92513881f13e26387b9da61fdca7d3866dce08defd43</citedby><cites>FETCH-LOGICAL-c334t-8394ebfc40d0b65e0176f92513881f13e26387b9da61fdca7d3866dce08defd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207540500142431$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207540500142431$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>McDonnell, P.</creatorcontrib><creatorcontrib>Joshi, S.</creatorcontrib><creatorcontrib>Qiu, R. G.</creatorcontrib><title>A learning approach to enhancing machine reconfiguration decision-making games in a heterarchical manufacturing environment</title><title>International journal of production research</title><description>Business process management (BPM) emerges as a promising guiding principle and technology for integrating existing assets and future deployments. BPM provides mechanisms to transform the behaviours of disparate and heterogeneous systems into standard and interoperable business processes, aimed at effectively facilitating the conduct of factory system integration. On the shop floor, BPM requires machine-level controllers to be architected in a heterarchical fashion. Past work by the authors introduced a heuristic non-cooperative game theoretic planning technique for an autonomous machine controller to frame a decision about an impending reconfiguration (i.e. setup change) in a heterarchical manufacturing environment. The work described in this paper extends the authors' previous work by employing a reinforcement learning approach for specifying the payoffs in reconfiguration games through capturing the effects of a sequence of reconfiguration decisions. Consequently, the controller can autonomously learn the long-term implications of decisions, and ultimately improve its decision-making process in manufacturing.</description><subject>Business process reengineering</subject><subject>Controllers</subject><subject>Decision making</subject><subject>Game theory</subject><subject>Heterarchical manufacturing</subject><subject>Integrated approach</subject><subject>Machine setup</subject><subject>Manufacturing</subject><subject>Reconfiguration decision</subject><subject>Studies</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v3CAQQFHUSt0m-QG9oR56cwrGxqzUSxQ1H1KkXlopNzQLwy6JDVvATaP8-WJtT42icgHNvDcwDCEfODvjTLHPjLVs6DvWM8a7thP8iKy4kLLplbp7Q1ZLvqmAeEfe53zP6upVtyLP53RESMGHLYX9PkUwO1oixbCDYJboVCM-IE1oYnB-OycoPgZq0fhcD80EDwu3hQkz9YEC3WHBBKl6BsZaIMwOTJnTgmH45VMME4ZyQt46GDOe_t2PyY_Lr98vrpvbb1c3F-e3jRGiK40S6w43znTMso3skfFBunXbc6EUd1xgK4UaNmsLkjtrYLBCSWkNMmXR2U4ck0-HurW9nzPmoiefDY4jBIxz1m3Fq9JW8OM_4H2cU6hv0y1XUvRyvUD8AJkUc07o9D75CdKT5kwvs9AvZlGd4eD44GKa4DGm0eoCT2NMLi0fnV9auvwu1fzyX1O8fvEfl-ijcA</recordid><startdate>20051015</startdate><enddate>20051015</enddate><creator>McDonnell, P.</creator><creator>Joshi, S.</creator><creator>Qiu, R. G.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>7U5</scope></search><sort><creationdate>20051015</creationdate><title>A learning approach to enhancing machine reconfiguration decision-making games in a heterarchical manufacturing environment</title><author>McDonnell, P. ; Joshi, S. ; Qiu, R. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8394ebfc40d0b65e0176f92513881f13e26387b9da61fdca7d3866dce08defd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Business process reengineering</topic><topic>Controllers</topic><topic>Decision making</topic><topic>Game theory</topic><topic>Heterarchical manufacturing</topic><topic>Integrated approach</topic><topic>Machine setup</topic><topic>Manufacturing</topic><topic>Reconfiguration decision</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDonnell, P.</creatorcontrib><creatorcontrib>Joshi, S.</creatorcontrib><creatorcontrib>Qiu, R. G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDonnell, P.</au><au>Joshi, S.</au><au>Qiu, R. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A learning approach to enhancing machine reconfiguration decision-making games in a heterarchical manufacturing environment</atitle><jtitle>International journal of production research</jtitle><date>2005-10-15</date><risdate>2005</risdate><volume>43</volume><issue>20</issue><spage>4321</spage><epage>4334</epage><pages>4321-4334</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>Business process management (BPM) emerges as a promising guiding principle and technology for integrating existing assets and future deployments. BPM provides mechanisms to transform the behaviours of disparate and heterogeneous systems into standard and interoperable business processes, aimed at effectively facilitating the conduct of factory system integration. On the shop floor, BPM requires machine-level controllers to be architected in a heterarchical fashion. Past work by the authors introduced a heuristic non-cooperative game theoretic planning technique for an autonomous machine controller to frame a decision about an impending reconfiguration (i.e. setup change) in a heterarchical manufacturing environment. The work described in this paper extends the authors' previous work by employing a reinforcement learning approach for specifying the payoffs in reconfiguration games through capturing the effects of a sequence of reconfiguration decisions. Consequently, the controller can autonomously learn the long-term implications of decisions, and ultimately improve its decision-making process in manufacturing.</abstract><cop>London</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207540500142431</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2005-10, Vol.43 (20), p.4321-4334
issn 0020-7543
1366-588X
language eng
recordid cdi_proquest_miscellaneous_28663862
source Business Source Complete; Taylor & Francis Journals Complete
subjects Business process reengineering
Controllers
Decision making
Game theory
Heterarchical manufacturing
Integrated approach
Machine setup
Manufacturing
Reconfiguration decision
Studies
title A learning approach to enhancing machine reconfiguration decision-making games in a heterarchical manufacturing environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20learning%20approach%20to%20enhancing%20machine%20reconfiguration%20decision-making%20games%20in%20a%20heterarchical%20manufacturing%20environment&rft.jtitle=International%20journal%20of%20production%20research&rft.au=McDonnell,%20P.&rft.date=2005-10-15&rft.volume=43&rft.issue=20&rft.spage=4321&rft.epage=4334&rft.pages=4321-4334&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207540500142431&rft_dat=%3Cproquest_infor%3E915794821%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218635692&rft_id=info:pmid/&rfr_iscdi=true