Intrinsic Stress‐strain in Barium Titanate Piezocatalysts Enabling Lithium−Oxygen Batteries with Low Overpotential and Long Life
Rechargeable lithium−oxygen (Li−O 2 ) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-10, Vol.62 (44), p.e202311739-e202311739 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e202311739 |
---|---|
container_issue | 44 |
container_start_page | e202311739 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Zheng, Li‐Jun Song, Li‐Na Wang, Xiao‐Xue Liang, Shuang Wang, Huan‐Feng Du, Xing‐Yuan Xu, Ji‐Jing |
description | Rechargeable lithium−oxygen (Li−O
2
) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode passivation. Herein, the intrinsic stress originated from the growth and decomposition of the discharge product (lithium peroxide, Li
2
O
2
) is employed as a microscopic pressure resource to induce the built‐in electric field, further improving the reaction kinetics and interfacial Lithium ion (Li
+
) transport during cycling. Piezopotential caused by the intrinsic stress‐strain of solid Li
2
O
2
is capable of providing the driving force for the separation and transport of carriers, enhancing the Li
+
transfer, and thus improving the redox reaction kinetics of Li−O
2
batteries. Combined with a variety of in situ characterizations, the catalytic mechanism of barium titanate (BTO), a typical piezoelectric material, was systematically investigated, and the effect of stress‐strain transformation on the electrochemical reaction kinetics and Li
+
interface transport for the Li−O
2
batteries is clearly established. The findings provide deep insight into the surface coupling strategy between intrinsic stress and electric fields to regulate the electrochemical reaction kinetics behavior and enhance the interfacial Li
+
transport for battery system. |
doi_str_mv | 10.1002/anie.202311739 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2866379362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866379362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-a5513f5df6b42b5cbe3fd98a9be6c94655935e05b1541301659016f24dad9b483</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhisEEmNw5RyJC5eOfDRpc4RpwKRJQ2Kcq7R1R6YuHUnGGCcOHDgifuJ-CRlDHJAs27IfW5bfKDoluEcwphfKaOhRTBkhKZN7UYdwSmKWpmw_5AljcZpxchgdOTcLfJZh0Yneh8ZbbZwu0b234Nzm7dN5q7RBwa6U1cs5mmivjPKA7jS8tqXyqlk779DAqKLRZopG2j8GcPPxNX5ZT2E76D1YDQ6tQguN2hUaP4NdtB6M16pBylSh-jNaw3F0UKvGwclv7EYP14NJ_zYejW-G_ctRXLIE-1hxTljNq1oUCS14WQCrK5kpWYAoZSI4l4wD5gXhCWGYCC6Dq2lSqUoWSca60flu78K2T0twPp9rV0LTKAPt0uU0E4Klkgka0LN_6KxdWhOuC1T4o6Qi3VK9HVXa1jkLdb6weq7sOic434qSb0XJ_0Rh37O5g10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878592672</pqid></control><display><type>article</type><title>Intrinsic Stress‐strain in Barium Titanate Piezocatalysts Enabling Lithium−Oxygen Batteries with Low Overpotential and Long Life</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zheng, Li‐Jun ; Song, Li‐Na ; Wang, Xiao‐Xue ; Liang, Shuang ; Wang, Huan‐Feng ; Du, Xing‐Yuan ; Xu, Ji‐Jing</creator><creatorcontrib>Zheng, Li‐Jun ; Song, Li‐Na ; Wang, Xiao‐Xue ; Liang, Shuang ; Wang, Huan‐Feng ; Du, Xing‐Yuan ; Xu, Ji‐Jing</creatorcontrib><description>Rechargeable lithium−oxygen (Li−O
2
) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode passivation. Herein, the intrinsic stress originated from the growth and decomposition of the discharge product (lithium peroxide, Li
2
O
2
) is employed as a microscopic pressure resource to induce the built‐in electric field, further improving the reaction kinetics and interfacial Lithium ion (Li
+
) transport during cycling. Piezopotential caused by the intrinsic stress‐strain of solid Li
2
O
2
is capable of providing the driving force for the separation and transport of carriers, enhancing the Li
+
transfer, and thus improving the redox reaction kinetics of Li−O
2
batteries. Combined with a variety of in situ characterizations, the catalytic mechanism of barium titanate (BTO), a typical piezoelectric material, was systematically investigated, and the effect of stress‐strain transformation on the electrochemical reaction kinetics and Li
+
interface transport for the Li−O
2
batteries is clearly established. The findings provide deep insight into the surface coupling strategy between intrinsic stress and electric fields to regulate the electrochemical reaction kinetics behavior and enhance the interfacial Li
+
transport for battery system.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202311739</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Barium ; Barium titanates ; Electric fields ; Electric vehicles ; Electrochemistry ; Electronic equipment ; Kinetics ; Lithium ; Lithium ions ; Oxygen ; Piezoelectricity ; Portable equipment ; Reaction kinetics ; Redox reactions ; Strain</subject><ispartof>Angewandte Chemie International Edition, 2023-10, Vol.62 (44), p.e202311739-e202311739</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-a5513f5df6b42b5cbe3fd98a9be6c94655935e05b1541301659016f24dad9b483</citedby><cites>FETCH-LOGICAL-c340t-a5513f5df6b42b5cbe3fd98a9be6c94655935e05b1541301659016f24dad9b483</cites><orcidid>0000-0002-6212-8224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zheng, Li‐Jun</creatorcontrib><creatorcontrib>Song, Li‐Na</creatorcontrib><creatorcontrib>Wang, Xiao‐Xue</creatorcontrib><creatorcontrib>Liang, Shuang</creatorcontrib><creatorcontrib>Wang, Huan‐Feng</creatorcontrib><creatorcontrib>Du, Xing‐Yuan</creatorcontrib><creatorcontrib>Xu, Ji‐Jing</creatorcontrib><title>Intrinsic Stress‐strain in Barium Titanate Piezocatalysts Enabling Lithium−Oxygen Batteries with Low Overpotential and Long Life</title><title>Angewandte Chemie International Edition</title><description>Rechargeable lithium−oxygen (Li−O
2
) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode passivation. Herein, the intrinsic stress originated from the growth and decomposition of the discharge product (lithium peroxide, Li
2
O
2
) is employed as a microscopic pressure resource to induce the built‐in electric field, further improving the reaction kinetics and interfacial Lithium ion (Li
+
) transport during cycling. Piezopotential caused by the intrinsic stress‐strain of solid Li
2
O
2
is capable of providing the driving force for the separation and transport of carriers, enhancing the Li
+
transfer, and thus improving the redox reaction kinetics of Li−O
2
batteries. Combined with a variety of in situ characterizations, the catalytic mechanism of barium titanate (BTO), a typical piezoelectric material, was systematically investigated, and the effect of stress‐strain transformation on the electrochemical reaction kinetics and Li
+
interface transport for the Li−O
2
batteries is clearly established. The findings provide deep insight into the surface coupling strategy between intrinsic stress and electric fields to regulate the electrochemical reaction kinetics behavior and enhance the interfacial Li
+
transport for battery system.</description><subject>Barium</subject><subject>Barium titanates</subject><subject>Electric fields</subject><subject>Electric vehicles</subject><subject>Electrochemistry</subject><subject>Electronic equipment</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Oxygen</subject><subject>Piezoelectricity</subject><subject>Portable equipment</subject><subject>Reaction kinetics</subject><subject>Redox reactions</subject><subject>Strain</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PwzAMhisEEmNw5RyJC5eOfDRpc4RpwKRJQ2Kcq7R1R6YuHUnGGCcOHDgifuJ-CRlDHJAs27IfW5bfKDoluEcwphfKaOhRTBkhKZN7UYdwSmKWpmw_5AljcZpxchgdOTcLfJZh0Yneh8ZbbZwu0b234Nzm7dN5q7RBwa6U1cs5mmivjPKA7jS8tqXyqlk779DAqKLRZopG2j8GcPPxNX5ZT2E76D1YDQ6tQguN2hUaP4NdtB6M16pBylSh-jNaw3F0UKvGwclv7EYP14NJ_zYejW-G_ctRXLIE-1hxTljNq1oUCS14WQCrK5kpWYAoZSI4l4wD5gXhCWGYCC6Dq2lSqUoWSca60flu78K2T0twPp9rV0LTKAPt0uU0E4Klkgka0LN_6KxdWhOuC1T4o6Qi3VK9HVXa1jkLdb6weq7sOic434qSb0XJ_0Rh37O5g10</recordid><startdate>20231026</startdate><enddate>20231026</enddate><creator>Zheng, Li‐Jun</creator><creator>Song, Li‐Na</creator><creator>Wang, Xiao‐Xue</creator><creator>Liang, Shuang</creator><creator>Wang, Huan‐Feng</creator><creator>Du, Xing‐Yuan</creator><creator>Xu, Ji‐Jing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6212-8224</orcidid></search><sort><creationdate>20231026</creationdate><title>Intrinsic Stress‐strain in Barium Titanate Piezocatalysts Enabling Lithium−Oxygen Batteries with Low Overpotential and Long Life</title><author>Zheng, Li‐Jun ; Song, Li‐Na ; Wang, Xiao‐Xue ; Liang, Shuang ; Wang, Huan‐Feng ; Du, Xing‐Yuan ; Xu, Ji‐Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-a5513f5df6b42b5cbe3fd98a9be6c94655935e05b1541301659016f24dad9b483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Barium</topic><topic>Barium titanates</topic><topic>Electric fields</topic><topic>Electric vehicles</topic><topic>Electrochemistry</topic><topic>Electronic equipment</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Oxygen</topic><topic>Piezoelectricity</topic><topic>Portable equipment</topic><topic>Reaction kinetics</topic><topic>Redox reactions</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Li‐Jun</creatorcontrib><creatorcontrib>Song, Li‐Na</creatorcontrib><creatorcontrib>Wang, Xiao‐Xue</creatorcontrib><creatorcontrib>Liang, Shuang</creatorcontrib><creatorcontrib>Wang, Huan‐Feng</creatorcontrib><creatorcontrib>Du, Xing‐Yuan</creatorcontrib><creatorcontrib>Xu, Ji‐Jing</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Li‐Jun</au><au>Song, Li‐Na</au><au>Wang, Xiao‐Xue</au><au>Liang, Shuang</au><au>Wang, Huan‐Feng</au><au>Du, Xing‐Yuan</au><au>Xu, Ji‐Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Stress‐strain in Barium Titanate Piezocatalysts Enabling Lithium−Oxygen Batteries with Low Overpotential and Long Life</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2023-10-26</date><risdate>2023</risdate><volume>62</volume><issue>44</issue><spage>e202311739</spage><epage>e202311739</epage><pages>e202311739-e202311739</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Rechargeable lithium−oxygen (Li−O
2
) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode passivation. Herein, the intrinsic stress originated from the growth and decomposition of the discharge product (lithium peroxide, Li
2
O
2
) is employed as a microscopic pressure resource to induce the built‐in electric field, further improving the reaction kinetics and interfacial Lithium ion (Li
+
) transport during cycling. Piezopotential caused by the intrinsic stress‐strain of solid Li
2
O
2
is capable of providing the driving force for the separation and transport of carriers, enhancing the Li
+
transfer, and thus improving the redox reaction kinetics of Li−O
2
batteries. Combined with a variety of in situ characterizations, the catalytic mechanism of barium titanate (BTO), a typical piezoelectric material, was systematically investigated, and the effect of stress‐strain transformation on the electrochemical reaction kinetics and Li
+
interface transport for the Li−O
2
batteries is clearly established. The findings provide deep insight into the surface coupling strategy between intrinsic stress and electric fields to regulate the electrochemical reaction kinetics behavior and enhance the interfacial Li
+
transport for battery system.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202311739</doi><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-6212-8224</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-10, Vol.62 (44), p.e202311739-e202311739 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2866379362 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Barium Barium titanates Electric fields Electric vehicles Electrochemistry Electronic equipment Kinetics Lithium Lithium ions Oxygen Piezoelectricity Portable equipment Reaction kinetics Redox reactions Strain |
title | Intrinsic Stress‐strain in Barium Titanate Piezocatalysts Enabling Lithium−Oxygen Batteries with Low Overpotential and Long Life |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T10%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Stress%E2%80%90strain%20in%20Barium%20Titanate%20Piezocatalysts%20Enabling%20Lithium%E2%88%92Oxygen%20Batteries%20with%20Low%20Overpotential%20and%20Long%20Life&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zheng,%20Li%E2%80%90Jun&rft.date=2023-10-26&rft.volume=62&rft.issue=44&rft.spage=e202311739&rft.epage=e202311739&rft.pages=e202311739-e202311739&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202311739&rft_dat=%3Cproquest_cross%3E2866379362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878592672&rft_id=info:pmid/&rfr_iscdi=true |