Intrinsic Stress‐strain in Barium Titanate Piezocatalysts Enabling Lithium−Oxygen Batteries with Low Overpotential and Long Life

Rechargeable lithium−oxygen (Li−O 2 ) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-10, Vol.62 (44), p.e202311739-e202311739
Hauptverfasser: Zheng, Li‐Jun, Song, Li‐Na, Wang, Xiao‐Xue, Liang, Shuang, Wang, Huan‐Feng, Du, Xing‐Yuan, Xu, Ji‐Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e202311739
container_issue 44
container_start_page e202311739
container_title Angewandte Chemie International Edition
container_volume 62
creator Zheng, Li‐Jun
Song, Li‐Na
Wang, Xiao‐Xue
Liang, Shuang
Wang, Huan‐Feng
Du, Xing‐Yuan
Xu, Ji‐Jing
description Rechargeable lithium−oxygen (Li−O 2 ) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode passivation. Herein, the intrinsic stress originated from the growth and decomposition of the discharge product (lithium peroxide, Li 2 O 2 ) is employed as a microscopic pressure resource to induce the built‐in electric field, further improving the reaction kinetics and interfacial Lithium ion (Li + ) transport during cycling. Piezopotential caused by the intrinsic stress‐strain of solid Li 2 O 2 is capable of providing the driving force for the separation and transport of carriers, enhancing the Li + transfer, and thus improving the redox reaction kinetics of Li−O 2 batteries. Combined with a variety of in situ characterizations, the catalytic mechanism of barium titanate (BTO), a typical piezoelectric material, was systematically investigated, and the effect of stress‐strain transformation on the electrochemical reaction kinetics and Li + interface transport for the Li−O 2 batteries is clearly established. The findings provide deep insight into the surface coupling strategy between intrinsic stress and electric fields to regulate the electrochemical reaction kinetics behavior and enhance the interfacial Li + transport for battery system.
doi_str_mv 10.1002/anie.202311739
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2866379362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866379362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-a5513f5df6b42b5cbe3fd98a9be6c94655935e05b1541301659016f24dad9b483</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhisEEmNw5RyJC5eOfDRpc4RpwKRJQ2Kcq7R1R6YuHUnGGCcOHDgifuJ-CRlDHJAs27IfW5bfKDoluEcwphfKaOhRTBkhKZN7UYdwSmKWpmw_5AljcZpxchgdOTcLfJZh0Yneh8ZbbZwu0b234Nzm7dN5q7RBwa6U1cs5mmivjPKA7jS8tqXyqlk779DAqKLRZopG2j8GcPPxNX5ZT2E76D1YDQ6tQguN2hUaP4NdtB6M16pBylSh-jNaw3F0UKvGwclv7EYP14NJ_zYejW-G_ctRXLIE-1hxTljNq1oUCS14WQCrK5kpWYAoZSI4l4wD5gXhCWGYCC6Dq2lSqUoWSca60flu78K2T0twPp9rV0LTKAPt0uU0E4Klkgka0LN_6KxdWhOuC1T4o6Qi3VK9HVXa1jkLdb6weq7sOic434qSb0XJ_0Rh37O5g10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878592672</pqid></control><display><type>article</type><title>Intrinsic Stress‐strain in Barium Titanate Piezocatalysts Enabling Lithium−Oxygen Batteries with Low Overpotential and Long Life</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zheng, Li‐Jun ; Song, Li‐Na ; Wang, Xiao‐Xue ; Liang, Shuang ; Wang, Huan‐Feng ; Du, Xing‐Yuan ; Xu, Ji‐Jing</creator><creatorcontrib>Zheng, Li‐Jun ; Song, Li‐Na ; Wang, Xiao‐Xue ; Liang, Shuang ; Wang, Huan‐Feng ; Du, Xing‐Yuan ; Xu, Ji‐Jing</creatorcontrib><description>Rechargeable lithium−oxygen (Li−O 2 ) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode passivation. Herein, the intrinsic stress originated from the growth and decomposition of the discharge product (lithium peroxide, Li 2 O 2 ) is employed as a microscopic pressure resource to induce the built‐in electric field, further improving the reaction kinetics and interfacial Lithium ion (Li + ) transport during cycling. Piezopotential caused by the intrinsic stress‐strain of solid Li 2 O 2 is capable of providing the driving force for the separation and transport of carriers, enhancing the Li + transfer, and thus improving the redox reaction kinetics of Li−O 2 batteries. Combined with a variety of in situ characterizations, the catalytic mechanism of barium titanate (BTO), a typical piezoelectric material, was systematically investigated, and the effect of stress‐strain transformation on the electrochemical reaction kinetics and Li + interface transport for the Li−O 2 batteries is clearly established. The findings provide deep insight into the surface coupling strategy between intrinsic stress and electric fields to regulate the electrochemical reaction kinetics behavior and enhance the interfacial Li + transport for battery system.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202311739</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Barium ; Barium titanates ; Electric fields ; Electric vehicles ; Electrochemistry ; Electronic equipment ; Kinetics ; Lithium ; Lithium ions ; Oxygen ; Piezoelectricity ; Portable equipment ; Reaction kinetics ; Redox reactions ; Strain</subject><ispartof>Angewandte Chemie International Edition, 2023-10, Vol.62 (44), p.e202311739-e202311739</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-a5513f5df6b42b5cbe3fd98a9be6c94655935e05b1541301659016f24dad9b483</citedby><cites>FETCH-LOGICAL-c340t-a5513f5df6b42b5cbe3fd98a9be6c94655935e05b1541301659016f24dad9b483</cites><orcidid>0000-0002-6212-8224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zheng, Li‐Jun</creatorcontrib><creatorcontrib>Song, Li‐Na</creatorcontrib><creatorcontrib>Wang, Xiao‐Xue</creatorcontrib><creatorcontrib>Liang, Shuang</creatorcontrib><creatorcontrib>Wang, Huan‐Feng</creatorcontrib><creatorcontrib>Du, Xing‐Yuan</creatorcontrib><creatorcontrib>Xu, Ji‐Jing</creatorcontrib><title>Intrinsic Stress‐strain in Barium Titanate Piezocatalysts Enabling Lithium−Oxygen Batteries with Low Overpotential and Long Life</title><title>Angewandte Chemie International Edition</title><description>Rechargeable lithium−oxygen (Li−O 2 ) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode passivation. Herein, the intrinsic stress originated from the growth and decomposition of the discharge product (lithium peroxide, Li 2 O 2 ) is employed as a microscopic pressure resource to induce the built‐in electric field, further improving the reaction kinetics and interfacial Lithium ion (Li + ) transport during cycling. Piezopotential caused by the intrinsic stress‐strain of solid Li 2 O 2 is capable of providing the driving force for the separation and transport of carriers, enhancing the Li + transfer, and thus improving the redox reaction kinetics of Li−O 2 batteries. Combined with a variety of in situ characterizations, the catalytic mechanism of barium titanate (BTO), a typical piezoelectric material, was systematically investigated, and the effect of stress‐strain transformation on the electrochemical reaction kinetics and Li + interface transport for the Li−O 2 batteries is clearly established. The findings provide deep insight into the surface coupling strategy between intrinsic stress and electric fields to regulate the electrochemical reaction kinetics behavior and enhance the interfacial Li + transport for battery system.</description><subject>Barium</subject><subject>Barium titanates</subject><subject>Electric fields</subject><subject>Electric vehicles</subject><subject>Electrochemistry</subject><subject>Electronic equipment</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Oxygen</subject><subject>Piezoelectricity</subject><subject>Portable equipment</subject><subject>Reaction kinetics</subject><subject>Redox reactions</subject><subject>Strain</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PwzAMhisEEmNw5RyJC5eOfDRpc4RpwKRJQ2Kcq7R1R6YuHUnGGCcOHDgifuJ-CRlDHJAs27IfW5bfKDoluEcwphfKaOhRTBkhKZN7UYdwSmKWpmw_5AljcZpxchgdOTcLfJZh0Yneh8ZbbZwu0b234Nzm7dN5q7RBwa6U1cs5mmivjPKA7jS8tqXyqlk779DAqKLRZopG2j8GcPPxNX5ZT2E76D1YDQ6tQguN2hUaP4NdtB6M16pBylSh-jNaw3F0UKvGwclv7EYP14NJ_zYejW-G_ctRXLIE-1hxTljNq1oUCS14WQCrK5kpWYAoZSI4l4wD5gXhCWGYCC6Dq2lSqUoWSca60flu78K2T0twPp9rV0LTKAPt0uU0E4Klkgka0LN_6KxdWhOuC1T4o6Qi3VK9HVXa1jkLdb6weq7sOic434qSb0XJ_0Rh37O5g10</recordid><startdate>20231026</startdate><enddate>20231026</enddate><creator>Zheng, Li‐Jun</creator><creator>Song, Li‐Na</creator><creator>Wang, Xiao‐Xue</creator><creator>Liang, Shuang</creator><creator>Wang, Huan‐Feng</creator><creator>Du, Xing‐Yuan</creator><creator>Xu, Ji‐Jing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6212-8224</orcidid></search><sort><creationdate>20231026</creationdate><title>Intrinsic Stress‐strain in Barium Titanate Piezocatalysts Enabling Lithium−Oxygen Batteries with Low Overpotential and Long Life</title><author>Zheng, Li‐Jun ; Song, Li‐Na ; Wang, Xiao‐Xue ; Liang, Shuang ; Wang, Huan‐Feng ; Du, Xing‐Yuan ; Xu, Ji‐Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-a5513f5df6b42b5cbe3fd98a9be6c94655935e05b1541301659016f24dad9b483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Barium</topic><topic>Barium titanates</topic><topic>Electric fields</topic><topic>Electric vehicles</topic><topic>Electrochemistry</topic><topic>Electronic equipment</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Oxygen</topic><topic>Piezoelectricity</topic><topic>Portable equipment</topic><topic>Reaction kinetics</topic><topic>Redox reactions</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Li‐Jun</creatorcontrib><creatorcontrib>Song, Li‐Na</creatorcontrib><creatorcontrib>Wang, Xiao‐Xue</creatorcontrib><creatorcontrib>Liang, Shuang</creatorcontrib><creatorcontrib>Wang, Huan‐Feng</creatorcontrib><creatorcontrib>Du, Xing‐Yuan</creatorcontrib><creatorcontrib>Xu, Ji‐Jing</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Li‐Jun</au><au>Song, Li‐Na</au><au>Wang, Xiao‐Xue</au><au>Liang, Shuang</au><au>Wang, Huan‐Feng</au><au>Du, Xing‐Yuan</au><au>Xu, Ji‐Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Stress‐strain in Barium Titanate Piezocatalysts Enabling Lithium−Oxygen Batteries with Low Overpotential and Long Life</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2023-10-26</date><risdate>2023</risdate><volume>62</volume><issue>44</issue><spage>e202311739</spage><epage>e202311739</epage><pages>e202311739-e202311739</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Rechargeable lithium−oxygen (Li−O 2 ) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode passivation. Herein, the intrinsic stress originated from the growth and decomposition of the discharge product (lithium peroxide, Li 2 O 2 ) is employed as a microscopic pressure resource to induce the built‐in electric field, further improving the reaction kinetics and interfacial Lithium ion (Li + ) transport during cycling. Piezopotential caused by the intrinsic stress‐strain of solid Li 2 O 2 is capable of providing the driving force for the separation and transport of carriers, enhancing the Li + transfer, and thus improving the redox reaction kinetics of Li−O 2 batteries. Combined with a variety of in situ characterizations, the catalytic mechanism of barium titanate (BTO), a typical piezoelectric material, was systematically investigated, and the effect of stress‐strain transformation on the electrochemical reaction kinetics and Li + interface transport for the Li−O 2 batteries is clearly established. The findings provide deep insight into the surface coupling strategy between intrinsic stress and electric fields to regulate the electrochemical reaction kinetics behavior and enhance the interfacial Li + transport for battery system.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202311739</doi><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-6212-8224</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-10, Vol.62 (44), p.e202311739-e202311739
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2866379362
source Wiley Online Library Journals Frontfile Complete
subjects Barium
Barium titanates
Electric fields
Electric vehicles
Electrochemistry
Electronic equipment
Kinetics
Lithium
Lithium ions
Oxygen
Piezoelectricity
Portable equipment
Reaction kinetics
Redox reactions
Strain
title Intrinsic Stress‐strain in Barium Titanate Piezocatalysts Enabling Lithium−Oxygen Batteries with Low Overpotential and Long Life
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T10%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Stress%E2%80%90strain%20in%20Barium%20Titanate%20Piezocatalysts%20Enabling%20Lithium%E2%88%92Oxygen%20Batteries%20with%20Low%20Overpotential%20and%20Long%20Life&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zheng,%20Li%E2%80%90Jun&rft.date=2023-10-26&rft.volume=62&rft.issue=44&rft.spage=e202311739&rft.epage=e202311739&rft.pages=e202311739-e202311739&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202311739&rft_dat=%3Cproquest_cross%3E2866379362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878592672&rft_id=info:pmid/&rfr_iscdi=true