Computational simulation on the study of Tacrolimus and its improved dermal retention using Poly(Ԑ-caprolactone) nanocapsules

Tacrolimus (TAC) is a drug from natural origin that can be used for topical application to control autoimmune skin diseases such as atopic dermatitis, psoriasis, and vitiligo. Computational simulation based on quantum mechanics theory by solving Schrödinger Equation for n-body problem may allow the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular graphics & modelling 2024-01, Vol.126, p.108625-108625, Article 108625
Hauptverfasser: Farago, Paulo Vitor, Camargo, Guilherme dos Anjos, Mendes, Matheus Benedito, Semianko, Betina Christi, Camilo Junior, Alexandre, Dias, Daniele Toniolo, Lara, Lucas Stori de, Novatski, Andressa, Mendes Nadal, Jessica, Manfron, Jane, Majumdar, Soumyajit, Khan, Ikhlas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108625
container_issue
container_start_page 108625
container_title Journal of molecular graphics & modelling
container_volume 126
creator Farago, Paulo Vitor
Camargo, Guilherme dos Anjos
Mendes, Matheus Benedito
Semianko, Betina Christi
Camilo Junior, Alexandre
Dias, Daniele Toniolo
Lara, Lucas Stori de
Novatski, Andressa
Mendes Nadal, Jessica
Manfron, Jane
Majumdar, Soumyajit
Khan, Ikhlas A.
description Tacrolimus (TAC) is a drug from natural origin that can be used for topical application to control autoimmune skin diseases such as atopic dermatitis, psoriasis, and vitiligo. Computational simulation based on quantum mechanics theory by solving Schrödinger Equation for n-body problem may allow the theoretical calculation of drug geometry, charge distribution and dipole moment, electronic levels and molecular orbitals, electronic transitions, and vibrational transitions. Additionally, the development of novel nanotechnology-based delivery systems containing TAC can be an approach for reducing the dose applied topically, increasing dermal retention, and reducing the reported side effects due to the controlled release pattern. Firstly, this paper was devoted to obtaining the molecular, electronic, and vibrational data for TAC by using five semi-empirical (SE) methods and one Density Functional Theory (DFT) method in order to expand the knowledge about the drug properties by computational simulation. Then, this study was carried out to prepare TAC-loaded poly(ԑ-caprolactone) nanocapsules by interfacial polymer deposition following solvent displacement and investigate the in vitro drug permeation using the Franz diffusion cell and the photoacoustic spectroscopy. Computational simulations were compared in the three schemes SE/SE, SE/DFT, and DFT/DFT, where the first method represented the procedure used for geometry optimization and the second one was performed to extract electronic and vibrational properties. Computational data showed correspondence with TAC geometry description and electronic properties, with few differences in HOMO – LUMO gap (Δ) and dipole values. The SE/DFT and DFT/DFT methods presented a better drug description for the UV–Vis, Infrared, and Raman spectra with low deviation from experimental values. Franz cell model demonstrated that TAC was more delivered across the Strat-M® membrane from the solution than the drug-loaded poly(ԑ-caprolactone) nanocapsules. Photoacoustic spectroscopy assay revealed that these nanocapsules remained more retained into the Strat-M® membranes, which is desirable for the topical application.
doi_str_mv 10.1016/j.jmgm.2023.108625
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2866377867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1093326323002231</els_id><sourcerecordid>2866377867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-5db74ab736e3600d45186f73191497d7b37584ea60b637e1aa44b6025eb7e6f83</originalsourceid><addsrcrecordid>eNp9kMtqHDEQRYVJ8PsHvAhaOoue6NEt9UA2YYgfYEgWzlqoW9W2Bj0mktowG3-DPy4fFI3HzjIgKKnqnovqInRByYISKr6sF2v_4BeMMF4bvWDdATqmveRNy1r-od7JkjecCX6ETnJeE0J4T-QhOuJSMsY7doyeV9Fv5qKLjUE7nK2f3esD11MeAecymy2OE77XY4quzjPWwWBbMrZ-k-ITGGwg-UonKBBe4Tnb8IB_Rre9_PPSjLrqnB5LDPAZBx1i7eTZQT5DHyftMpy_1VP06-r7_eqmuftxfbv6dteMvBOl6cwgWz1ILoALQkzb0V5MktMlbZfSyIHLrm9BCzIILoFq3baDIKyDQYKYen6KLve-9SO_Z8hFeZtHcE4HiHNWrBcVlL2QVcr20rpuzgkmtUnW67RVlKhd7mqtdrmrXe5qn3uFPr35z4MH8w95D7oKvu4FULd8spBUHi2EEYxNMBZlov2f_1-g_paU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866377867</pqid></control><display><type>article</type><title>Computational simulation on the study of Tacrolimus and its improved dermal retention using Poly(Ԑ-caprolactone) nanocapsules</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Farago, Paulo Vitor ; Camargo, Guilherme dos Anjos ; Mendes, Matheus Benedito ; Semianko, Betina Christi ; Camilo Junior, Alexandre ; Dias, Daniele Toniolo ; Lara, Lucas Stori de ; Novatski, Andressa ; Mendes Nadal, Jessica ; Manfron, Jane ; Majumdar, Soumyajit ; Khan, Ikhlas A.</creator><creatorcontrib>Farago, Paulo Vitor ; Camargo, Guilherme dos Anjos ; Mendes, Matheus Benedito ; Semianko, Betina Christi ; Camilo Junior, Alexandre ; Dias, Daniele Toniolo ; Lara, Lucas Stori de ; Novatski, Andressa ; Mendes Nadal, Jessica ; Manfron, Jane ; Majumdar, Soumyajit ; Khan, Ikhlas A.</creatorcontrib><description>Tacrolimus (TAC) is a drug from natural origin that can be used for topical application to control autoimmune skin diseases such as atopic dermatitis, psoriasis, and vitiligo. Computational simulation based on quantum mechanics theory by solving Schrödinger Equation for n-body problem may allow the theoretical calculation of drug geometry, charge distribution and dipole moment, electronic levels and molecular orbitals, electronic transitions, and vibrational transitions. Additionally, the development of novel nanotechnology-based delivery systems containing TAC can be an approach for reducing the dose applied topically, increasing dermal retention, and reducing the reported side effects due to the controlled release pattern. Firstly, this paper was devoted to obtaining the molecular, electronic, and vibrational data for TAC by using five semi-empirical (SE) methods and one Density Functional Theory (DFT) method in order to expand the knowledge about the drug properties by computational simulation. Then, this study was carried out to prepare TAC-loaded poly(ԑ-caprolactone) nanocapsules by interfacial polymer deposition following solvent displacement and investigate the in vitro drug permeation using the Franz diffusion cell and the photoacoustic spectroscopy. Computational simulations were compared in the three schemes SE/SE, SE/DFT, and DFT/DFT, where the first method represented the procedure used for geometry optimization and the second one was performed to extract electronic and vibrational properties. Computational data showed correspondence with TAC geometry description and electronic properties, with few differences in HOMO – LUMO gap (Δ) and dipole values. The SE/DFT and DFT/DFT methods presented a better drug description for the UV–Vis, Infrared, and Raman spectra with low deviation from experimental values. Franz cell model demonstrated that TAC was more delivered across the Strat-M® membrane from the solution than the drug-loaded poly(ԑ-caprolactone) nanocapsules. Photoacoustic spectroscopy assay revealed that these nanocapsules remained more retained into the Strat-M® membranes, which is desirable for the topical application.</description><identifier>ISSN: 1093-3263</identifier><identifier>EISSN: 1873-4243</identifier><identifier>DOI: 10.1016/j.jmgm.2023.108625</identifier><identifier>PMID: 37722352</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Franz diffusion cell ; Macrolide lactone ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Conformation ; Nanocapsules ; Nanotechnology ; Photoacoustic spectroscopy ; Quantum Theory ; Semiempirical and DFT methods ; Skin-related autoimmune disorders ; Spectrophotometry, Ultraviolet ; Spectroscopy, Fourier Transform Infrared ; Spectrum Analysis, Raman ; Tacrolimus ; Thermodynamics ; Vibration</subject><ispartof>Journal of molecular graphics &amp; modelling, 2024-01, Vol.126, p.108625-108625, Article 108625</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-5db74ab736e3600d45186f73191497d7b37584ea60b637e1aa44b6025eb7e6f83</citedby><cites>FETCH-LOGICAL-c356t-5db74ab736e3600d45186f73191497d7b37584ea60b637e1aa44b6025eb7e6f83</cites><orcidid>0000-0002-9934-4027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmgm.2023.108625$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37722352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farago, Paulo Vitor</creatorcontrib><creatorcontrib>Camargo, Guilherme dos Anjos</creatorcontrib><creatorcontrib>Mendes, Matheus Benedito</creatorcontrib><creatorcontrib>Semianko, Betina Christi</creatorcontrib><creatorcontrib>Camilo Junior, Alexandre</creatorcontrib><creatorcontrib>Dias, Daniele Toniolo</creatorcontrib><creatorcontrib>Lara, Lucas Stori de</creatorcontrib><creatorcontrib>Novatski, Andressa</creatorcontrib><creatorcontrib>Mendes Nadal, Jessica</creatorcontrib><creatorcontrib>Manfron, Jane</creatorcontrib><creatorcontrib>Majumdar, Soumyajit</creatorcontrib><creatorcontrib>Khan, Ikhlas A.</creatorcontrib><title>Computational simulation on the study of Tacrolimus and its improved dermal retention using Poly(Ԑ-caprolactone) nanocapsules</title><title>Journal of molecular graphics &amp; modelling</title><addtitle>J Mol Graph Model</addtitle><description>Tacrolimus (TAC) is a drug from natural origin that can be used for topical application to control autoimmune skin diseases such as atopic dermatitis, psoriasis, and vitiligo. Computational simulation based on quantum mechanics theory by solving Schrödinger Equation for n-body problem may allow the theoretical calculation of drug geometry, charge distribution and dipole moment, electronic levels and molecular orbitals, electronic transitions, and vibrational transitions. Additionally, the development of novel nanotechnology-based delivery systems containing TAC can be an approach for reducing the dose applied topically, increasing dermal retention, and reducing the reported side effects due to the controlled release pattern. Firstly, this paper was devoted to obtaining the molecular, electronic, and vibrational data for TAC by using five semi-empirical (SE) methods and one Density Functional Theory (DFT) method in order to expand the knowledge about the drug properties by computational simulation. Then, this study was carried out to prepare TAC-loaded poly(ԑ-caprolactone) nanocapsules by interfacial polymer deposition following solvent displacement and investigate the in vitro drug permeation using the Franz diffusion cell and the photoacoustic spectroscopy. Computational simulations were compared in the three schemes SE/SE, SE/DFT, and DFT/DFT, where the first method represented the procedure used for geometry optimization and the second one was performed to extract electronic and vibrational properties. Computational data showed correspondence with TAC geometry description and electronic properties, with few differences in HOMO – LUMO gap (Δ) and dipole values. The SE/DFT and DFT/DFT methods presented a better drug description for the UV–Vis, Infrared, and Raman spectra with low deviation from experimental values. Franz cell model demonstrated that TAC was more delivered across the Strat-M® membrane from the solution than the drug-loaded poly(ԑ-caprolactone) nanocapsules. Photoacoustic spectroscopy assay revealed that these nanocapsules remained more retained into the Strat-M® membranes, which is desirable for the topical application.</description><subject>Franz diffusion cell</subject><subject>Macrolide lactone</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Nanocapsules</subject><subject>Nanotechnology</subject><subject>Photoacoustic spectroscopy</subject><subject>Quantum Theory</subject><subject>Semiempirical and DFT methods</subject><subject>Skin-related autoimmune disorders</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum Analysis, Raman</subject><subject>Tacrolimus</subject><subject>Thermodynamics</subject><subject>Vibration</subject><issn>1093-3263</issn><issn>1873-4243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtqHDEQRYVJ8PsHvAhaOoue6NEt9UA2YYgfYEgWzlqoW9W2Bj0mktowG3-DPy4fFI3HzjIgKKnqnovqInRByYISKr6sF2v_4BeMMF4bvWDdATqmveRNy1r-od7JkjecCX6ETnJeE0J4T-QhOuJSMsY7doyeV9Fv5qKLjUE7nK2f3esD11MeAecymy2OE77XY4quzjPWwWBbMrZ-k-ITGGwg-UonKBBe4Tnb8IB_Rre9_PPSjLrqnB5LDPAZBx1i7eTZQT5DHyftMpy_1VP06-r7_eqmuftxfbv6dteMvBOl6cwgWz1ILoALQkzb0V5MktMlbZfSyIHLrm9BCzIILoFq3baDIKyDQYKYen6KLve-9SO_Z8hFeZtHcE4HiHNWrBcVlL2QVcr20rpuzgkmtUnW67RVlKhd7mqtdrmrXe5qn3uFPr35z4MH8w95D7oKvu4FULd8spBUHi2EEYxNMBZlov2f_1-g_paU</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Farago, Paulo Vitor</creator><creator>Camargo, Guilherme dos Anjos</creator><creator>Mendes, Matheus Benedito</creator><creator>Semianko, Betina Christi</creator><creator>Camilo Junior, Alexandre</creator><creator>Dias, Daniele Toniolo</creator><creator>Lara, Lucas Stori de</creator><creator>Novatski, Andressa</creator><creator>Mendes Nadal, Jessica</creator><creator>Manfron, Jane</creator><creator>Majumdar, Soumyajit</creator><creator>Khan, Ikhlas A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9934-4027</orcidid></search><sort><creationdate>202401</creationdate><title>Computational simulation on the study of Tacrolimus and its improved dermal retention using Poly(Ԑ-caprolactone) nanocapsules</title><author>Farago, Paulo Vitor ; Camargo, Guilherme dos Anjos ; Mendes, Matheus Benedito ; Semianko, Betina Christi ; Camilo Junior, Alexandre ; Dias, Daniele Toniolo ; Lara, Lucas Stori de ; Novatski, Andressa ; Mendes Nadal, Jessica ; Manfron, Jane ; Majumdar, Soumyajit ; Khan, Ikhlas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-5db74ab736e3600d45186f73191497d7b37584ea60b637e1aa44b6025eb7e6f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Franz diffusion cell</topic><topic>Macrolide lactone</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Nanocapsules</topic><topic>Nanotechnology</topic><topic>Photoacoustic spectroscopy</topic><topic>Quantum Theory</topic><topic>Semiempirical and DFT methods</topic><topic>Skin-related autoimmune disorders</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum Analysis, Raman</topic><topic>Tacrolimus</topic><topic>Thermodynamics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farago, Paulo Vitor</creatorcontrib><creatorcontrib>Camargo, Guilherme dos Anjos</creatorcontrib><creatorcontrib>Mendes, Matheus Benedito</creatorcontrib><creatorcontrib>Semianko, Betina Christi</creatorcontrib><creatorcontrib>Camilo Junior, Alexandre</creatorcontrib><creatorcontrib>Dias, Daniele Toniolo</creatorcontrib><creatorcontrib>Lara, Lucas Stori de</creatorcontrib><creatorcontrib>Novatski, Andressa</creatorcontrib><creatorcontrib>Mendes Nadal, Jessica</creatorcontrib><creatorcontrib>Manfron, Jane</creatorcontrib><creatorcontrib>Majumdar, Soumyajit</creatorcontrib><creatorcontrib>Khan, Ikhlas A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular graphics &amp; modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farago, Paulo Vitor</au><au>Camargo, Guilherme dos Anjos</au><au>Mendes, Matheus Benedito</au><au>Semianko, Betina Christi</au><au>Camilo Junior, Alexandre</au><au>Dias, Daniele Toniolo</au><au>Lara, Lucas Stori de</au><au>Novatski, Andressa</au><au>Mendes Nadal, Jessica</au><au>Manfron, Jane</au><au>Majumdar, Soumyajit</au><au>Khan, Ikhlas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational simulation on the study of Tacrolimus and its improved dermal retention using Poly(Ԑ-caprolactone) nanocapsules</atitle><jtitle>Journal of molecular graphics &amp; modelling</jtitle><addtitle>J Mol Graph Model</addtitle><date>2024-01</date><risdate>2024</risdate><volume>126</volume><spage>108625</spage><epage>108625</epage><pages>108625-108625</pages><artnum>108625</artnum><issn>1093-3263</issn><eissn>1873-4243</eissn><abstract>Tacrolimus (TAC) is a drug from natural origin that can be used for topical application to control autoimmune skin diseases such as atopic dermatitis, psoriasis, and vitiligo. Computational simulation based on quantum mechanics theory by solving Schrödinger Equation for n-body problem may allow the theoretical calculation of drug geometry, charge distribution and dipole moment, electronic levels and molecular orbitals, electronic transitions, and vibrational transitions. Additionally, the development of novel nanotechnology-based delivery systems containing TAC can be an approach for reducing the dose applied topically, increasing dermal retention, and reducing the reported side effects due to the controlled release pattern. Firstly, this paper was devoted to obtaining the molecular, electronic, and vibrational data for TAC by using five semi-empirical (SE) methods and one Density Functional Theory (DFT) method in order to expand the knowledge about the drug properties by computational simulation. Then, this study was carried out to prepare TAC-loaded poly(ԑ-caprolactone) nanocapsules by interfacial polymer deposition following solvent displacement and investigate the in vitro drug permeation using the Franz diffusion cell and the photoacoustic spectroscopy. Computational simulations were compared in the three schemes SE/SE, SE/DFT, and DFT/DFT, where the first method represented the procedure used for geometry optimization and the second one was performed to extract electronic and vibrational properties. Computational data showed correspondence with TAC geometry description and electronic properties, with few differences in HOMO – LUMO gap (Δ) and dipole values. The SE/DFT and DFT/DFT methods presented a better drug description for the UV–Vis, Infrared, and Raman spectra with low deviation from experimental values. Franz cell model demonstrated that TAC was more delivered across the Strat-M® membrane from the solution than the drug-loaded poly(ԑ-caprolactone) nanocapsules. Photoacoustic spectroscopy assay revealed that these nanocapsules remained more retained into the Strat-M® membranes, which is desirable for the topical application.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37722352</pmid><doi>10.1016/j.jmgm.2023.108625</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9934-4027</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1093-3263
ispartof Journal of molecular graphics & modelling, 2024-01, Vol.126, p.108625-108625, Article 108625
issn 1093-3263
1873-4243
language eng
recordid cdi_proquest_miscellaneous_2866377867
source MEDLINE; Elsevier ScienceDirect Journals
subjects Franz diffusion cell
Macrolide lactone
Magnetic Resonance Spectroscopy
Models, Molecular
Molecular Conformation
Nanocapsules
Nanotechnology
Photoacoustic spectroscopy
Quantum Theory
Semiempirical and DFT methods
Skin-related autoimmune disorders
Spectrophotometry, Ultraviolet
Spectroscopy, Fourier Transform Infrared
Spectrum Analysis, Raman
Tacrolimus
Thermodynamics
Vibration
title Computational simulation on the study of Tacrolimus and its improved dermal retention using Poly(Ԑ-caprolactone) nanocapsules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20simulation%20on%20the%20study%20of%20Tacrolimus%20and%20its%20improved%20dermal%20retention%20using%20Poly(%D4%90-caprolactone)%20nanocapsules&rft.jtitle=Journal%20of%20molecular%20graphics%20&%20modelling&rft.au=Farago,%20Paulo%20Vitor&rft.date=2024-01&rft.volume=126&rft.spage=108625&rft.epage=108625&rft.pages=108625-108625&rft.artnum=108625&rft.issn=1093-3263&rft.eissn=1873-4243&rft_id=info:doi/10.1016/j.jmgm.2023.108625&rft_dat=%3Cproquest_cross%3E2866377867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866377867&rft_id=info:pmid/37722352&rft_els_id=S1093326323002231&rfr_iscdi=true