Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)
Scanning near-field optical microscopy (SNOM or NSOM) is the technique with the highest lateral optical resolution available today, while infrared (IR) spectroscopy has a high chemical specificity. Combining SNOM with a tunable IR source produces a unique tool, IR-SNOM, capable of imaging distributi...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2005-09, Vol.401 (1), p.80-85 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 80 |
container_title | Journal of alloys and compounds |
container_volume | 401 |
creator | Vobornik, D. Margaritondo, G. Sanghera, J.S. Thielen, P. Aggarwal, I.D. Ivanov, B. Tolk, N.H. Manni, V. Grimaldi, S. Lisi, A. Rieti, S. Piston, D.W. Generosi, R. Luce, M. Perfetti, P. Cricenti, A. |
description | Scanning near-field optical microscopy (SNOM or NSOM) is the technique with the highest lateral optical resolution available today, while infrared (IR) spectroscopy has a high chemical specificity. Combining SNOM with a tunable IR source produces a unique tool, IR-SNOM, capable of imaging distributions of chemical species with a 100
nm spatial resolution. We present in this paper boron nitride (BN) thin film images, where IR-SNOM shows the distribution of hexagonal and cubic phases within the sample. Exciting potential applications in biophysics and medical sciences are illustrated with SNOM images of the distribution of different chemical species within cells. We present in this article images with resolutions of the order of
λ/60 with SNOM working with infrared light. With our SNOM setup, we routinely get optical resolutions between 50 and 150
nm, regardless of the wavelength of the light used to illuminate the sample. |
doi_str_mv | 10.1016/j.jallcom.2005.02.057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28661448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838805003877</els_id><sourcerecordid>28661448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-320f1f509cc8ecfea0af969d451784424cccbfbc21213b0d2ad74685ef43be213</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKEXRQ-tkzRt05PI4hesCn6cQ3Y6kSzdtiZdwX9vll3w6GlgeN75eBg75ZBx4OXVMluatsV-lQmAIgORQVHtsQlXVZ7Ksqz32QRqUaQqV-qQHYWwBABe53zC7t8GwtH3AfvBYeI6642nJglous51n0lHxqfWUdsk_TA6NG2ycrgN_CQXj6_p2_PL0-UxO7CmDXSyq1P2cXf7PntI5y_3j7ObeYqSV2OaC7DcFlAjKkJLBoyty7qRBa-UlEIi4sIuUHDB8wU0wjSVLFVBVuYLir0pO9_OHXz_taYw6pULSG1rOurXQQtVllxKFcFiC25uDZ6sHrxbGf-jOeiNNr3UO216o02D0FFbzJ3tFpjooI06OnThL1zxGhSIyF1vOYrffjvyOqCjDqlxPhrVTe_-2fQLYYCF1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28661448</pqid></control><display><type>article</type><title>Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Vobornik, D. ; Margaritondo, G. ; Sanghera, J.S. ; Thielen, P. ; Aggarwal, I.D. ; Ivanov, B. ; Tolk, N.H. ; Manni, V. ; Grimaldi, S. ; Lisi, A. ; Rieti, S. ; Piston, D.W. ; Generosi, R. ; Luce, M. ; Perfetti, P. ; Cricenti, A.</creator><creatorcontrib>Vobornik, D. ; Margaritondo, G. ; Sanghera, J.S. ; Thielen, P. ; Aggarwal, I.D. ; Ivanov, B. ; Tolk, N.H. ; Manni, V. ; Grimaldi, S. ; Lisi, A. ; Rieti, S. ; Piston, D.W. ; Generosi, R. ; Luce, M. ; Perfetti, P. ; Cricenti, A.</creatorcontrib><description>Scanning near-field optical microscopy (SNOM or NSOM) is the technique with the highest lateral optical resolution available today, while infrared (IR) spectroscopy has a high chemical specificity. Combining SNOM with a tunable IR source produces a unique tool, IR-SNOM, capable of imaging distributions of chemical species with a 100
nm spatial resolution. We present in this paper boron nitride (BN) thin film images, where IR-SNOM shows the distribution of hexagonal and cubic phases within the sample. Exciting potential applications in biophysics and medical sciences are illustrated with SNOM images of the distribution of different chemical species within cells. We present in this article images with resolutions of the order of
λ/60 with SNOM working with infrared light. With our SNOM setup, we routinely get optical resolutions between 50 and 150
nm, regardless of the wavelength of the light used to illuminate the sample.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2005.02.057</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Cells ; Condensed matter: structure, mechanical and thermal properties ; Electron, ion, and scanning probe microscopy ; Exact sciences and technology ; Infrared spectroscopy ; NSOM ; Physics ; Scanning probe microscopy: scanning tunneling, atomic force, scanning optical, magnetic force, etc ; SNOM ; Structure of solids and liquids; crystallography ; Thin film</subject><ispartof>Journal of alloys and compounds, 2005-09, Vol.401 (1), p.80-85</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-320f1f509cc8ecfea0af969d451784424cccbfbc21213b0d2ad74685ef43be213</citedby><cites>FETCH-LOGICAL-c417t-320f1f509cc8ecfea0af969d451784424cccbfbc21213b0d2ad74685ef43be213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2005.02.057$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17190802$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vobornik, D.</creatorcontrib><creatorcontrib>Margaritondo, G.</creatorcontrib><creatorcontrib>Sanghera, J.S.</creatorcontrib><creatorcontrib>Thielen, P.</creatorcontrib><creatorcontrib>Aggarwal, I.D.</creatorcontrib><creatorcontrib>Ivanov, B.</creatorcontrib><creatorcontrib>Tolk, N.H.</creatorcontrib><creatorcontrib>Manni, V.</creatorcontrib><creatorcontrib>Grimaldi, S.</creatorcontrib><creatorcontrib>Lisi, A.</creatorcontrib><creatorcontrib>Rieti, S.</creatorcontrib><creatorcontrib>Piston, D.W.</creatorcontrib><creatorcontrib>Generosi, R.</creatorcontrib><creatorcontrib>Luce, M.</creatorcontrib><creatorcontrib>Perfetti, P.</creatorcontrib><creatorcontrib>Cricenti, A.</creatorcontrib><title>Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)</title><title>Journal of alloys and compounds</title><description>Scanning near-field optical microscopy (SNOM or NSOM) is the technique with the highest lateral optical resolution available today, while infrared (IR) spectroscopy has a high chemical specificity. Combining SNOM with a tunable IR source produces a unique tool, IR-SNOM, capable of imaging distributions of chemical species with a 100
nm spatial resolution. We present in this paper boron nitride (BN) thin film images, where IR-SNOM shows the distribution of hexagonal and cubic phases within the sample. Exciting potential applications in biophysics and medical sciences are illustrated with SNOM images of the distribution of different chemical species within cells. We present in this article images with resolutions of the order of
λ/60 with SNOM working with infrared light. With our SNOM setup, we routinely get optical resolutions between 50 and 150
nm, regardless of the wavelength of the light used to illuminate the sample.</description><subject>Cells</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electron, ion, and scanning probe microscopy</subject><subject>Exact sciences and technology</subject><subject>Infrared spectroscopy</subject><subject>NSOM</subject><subject>Physics</subject><subject>Scanning probe microscopy: scanning tunneling, atomic force, scanning optical, magnetic force, etc</subject><subject>SNOM</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Thin film</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKEXRQ-tkzRt05PI4hesCn6cQ3Y6kSzdtiZdwX9vll3w6GlgeN75eBg75ZBx4OXVMluatsV-lQmAIgORQVHtsQlXVZ7Ksqz32QRqUaQqV-qQHYWwBABe53zC7t8GwtH3AfvBYeI6642nJglous51n0lHxqfWUdsk_TA6NG2ycrgN_CQXj6_p2_PL0-UxO7CmDXSyq1P2cXf7PntI5y_3j7ObeYqSV2OaC7DcFlAjKkJLBoyty7qRBa-UlEIi4sIuUHDB8wU0wjSVLFVBVuYLir0pO9_OHXz_taYw6pULSG1rOurXQQtVllxKFcFiC25uDZ6sHrxbGf-jOeiNNr3UO216o02D0FFbzJ3tFpjooI06OnThL1zxGhSIyF1vOYrffjvyOqCjDqlxPhrVTe_-2fQLYYCF1g</recordid><startdate>20050929</startdate><enddate>20050929</enddate><creator>Vobornik, D.</creator><creator>Margaritondo, G.</creator><creator>Sanghera, J.S.</creator><creator>Thielen, P.</creator><creator>Aggarwal, I.D.</creator><creator>Ivanov, B.</creator><creator>Tolk, N.H.</creator><creator>Manni, V.</creator><creator>Grimaldi, S.</creator><creator>Lisi, A.</creator><creator>Rieti, S.</creator><creator>Piston, D.W.</creator><creator>Generosi, R.</creator><creator>Luce, M.</creator><creator>Perfetti, P.</creator><creator>Cricenti, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20050929</creationdate><title>Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)</title><author>Vobornik, D. ; Margaritondo, G. ; Sanghera, J.S. ; Thielen, P. ; Aggarwal, I.D. ; Ivanov, B. ; Tolk, N.H. ; Manni, V. ; Grimaldi, S. ; Lisi, A. ; Rieti, S. ; Piston, D.W. ; Generosi, R. ; Luce, M. ; Perfetti, P. ; Cricenti, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-320f1f509cc8ecfea0af969d451784424cccbfbc21213b0d2ad74685ef43be213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cells</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electron, ion, and scanning probe microscopy</topic><topic>Exact sciences and technology</topic><topic>Infrared spectroscopy</topic><topic>NSOM</topic><topic>Physics</topic><topic>Scanning probe microscopy: scanning tunneling, atomic force, scanning optical, magnetic force, etc</topic><topic>SNOM</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Thin film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vobornik, D.</creatorcontrib><creatorcontrib>Margaritondo, G.</creatorcontrib><creatorcontrib>Sanghera, J.S.</creatorcontrib><creatorcontrib>Thielen, P.</creatorcontrib><creatorcontrib>Aggarwal, I.D.</creatorcontrib><creatorcontrib>Ivanov, B.</creatorcontrib><creatorcontrib>Tolk, N.H.</creatorcontrib><creatorcontrib>Manni, V.</creatorcontrib><creatorcontrib>Grimaldi, S.</creatorcontrib><creatorcontrib>Lisi, A.</creatorcontrib><creatorcontrib>Rieti, S.</creatorcontrib><creatorcontrib>Piston, D.W.</creatorcontrib><creatorcontrib>Generosi, R.</creatorcontrib><creatorcontrib>Luce, M.</creatorcontrib><creatorcontrib>Perfetti, P.</creatorcontrib><creatorcontrib>Cricenti, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vobornik, D.</au><au>Margaritondo, G.</au><au>Sanghera, J.S.</au><au>Thielen, P.</au><au>Aggarwal, I.D.</au><au>Ivanov, B.</au><au>Tolk, N.H.</au><au>Manni, V.</au><au>Grimaldi, S.</au><au>Lisi, A.</au><au>Rieti, S.</au><au>Piston, D.W.</au><au>Generosi, R.</au><au>Luce, M.</au><au>Perfetti, P.</au><au>Cricenti, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2005-09-29</date><risdate>2005</risdate><volume>401</volume><issue>1</issue><spage>80</spage><epage>85</epage><pages>80-85</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Scanning near-field optical microscopy (SNOM or NSOM) is the technique with the highest lateral optical resolution available today, while infrared (IR) spectroscopy has a high chemical specificity. Combining SNOM with a tunable IR source produces a unique tool, IR-SNOM, capable of imaging distributions of chemical species with a 100
nm spatial resolution. We present in this paper boron nitride (BN) thin film images, where IR-SNOM shows the distribution of hexagonal and cubic phases within the sample. Exciting potential applications in biophysics and medical sciences are illustrated with SNOM images of the distribution of different chemical species within cells. We present in this article images with resolutions of the order of
λ/60 with SNOM working with infrared light. With our SNOM setup, we routinely get optical resolutions between 50 and 150
nm, regardless of the wavelength of the light used to illuminate the sample.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2005.02.057</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2005-09, Vol.401 (1), p.80-85 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_miscellaneous_28661448 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Cells Condensed matter: structure, mechanical and thermal properties Electron, ion, and scanning probe microscopy Exact sciences and technology Infrared spectroscopy NSOM Physics Scanning probe microscopy: scanning tunneling, atomic force, scanning optical, magnetic force, etc SNOM Structure of solids and liquids crystallography Thin film |
title | Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectroscopic%20infrared%20scanning%20near-field%20optical%20microscopy%20(IR-SNOM)&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Vobornik,%20D.&rft.date=2005-09-29&rft.volume=401&rft.issue=1&rft.spage=80&rft.epage=85&rft.pages=80-85&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2005.02.057&rft_dat=%3Cproquest_cross%3E28661448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28661448&rft_id=info:pmid/&rft_els_id=S0925838805003877&rfr_iscdi=true |