Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)

Scanning near-field optical microscopy (SNOM or NSOM) is the technique with the highest lateral optical resolution available today, while infrared (IR) spectroscopy has a high chemical specificity. Combining SNOM with a tunable IR source produces a unique tool, IR-SNOM, capable of imaging distributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2005-09, Vol.401 (1), p.80-85
Hauptverfasser: Vobornik, D., Margaritondo, G., Sanghera, J.S., Thielen, P., Aggarwal, I.D., Ivanov, B., Tolk, N.H., Manni, V., Grimaldi, S., Lisi, A., Rieti, S., Piston, D.W., Generosi, R., Luce, M., Perfetti, P., Cricenti, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 1
container_start_page 80
container_title Journal of alloys and compounds
container_volume 401
creator Vobornik, D.
Margaritondo, G.
Sanghera, J.S.
Thielen, P.
Aggarwal, I.D.
Ivanov, B.
Tolk, N.H.
Manni, V.
Grimaldi, S.
Lisi, A.
Rieti, S.
Piston, D.W.
Generosi, R.
Luce, M.
Perfetti, P.
Cricenti, A.
description Scanning near-field optical microscopy (SNOM or NSOM) is the technique with the highest lateral optical resolution available today, while infrared (IR) spectroscopy has a high chemical specificity. Combining SNOM with a tunable IR source produces a unique tool, IR-SNOM, capable of imaging distributions of chemical species with a 100 nm spatial resolution. We present in this paper boron nitride (BN) thin film images, where IR-SNOM shows the distribution of hexagonal and cubic phases within the sample. Exciting potential applications in biophysics and medical sciences are illustrated with SNOM images of the distribution of different chemical species within cells. We present in this article images with resolutions of the order of λ/60 with SNOM working with infrared light. With our SNOM setup, we routinely get optical resolutions between 50 and 150 nm, regardless of the wavelength of the light used to illuminate the sample.
doi_str_mv 10.1016/j.jallcom.2005.02.057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28661448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838805003877</els_id><sourcerecordid>28661448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-320f1f509cc8ecfea0af969d451784424cccbfbc21213b0d2ad74685ef43be213</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKEXRQ-tkzRt05PI4hesCn6cQ3Y6kSzdtiZdwX9vll3w6GlgeN75eBg75ZBx4OXVMluatsV-lQmAIgORQVHtsQlXVZ7Ksqz32QRqUaQqV-qQHYWwBABe53zC7t8GwtH3AfvBYeI6642nJglous51n0lHxqfWUdsk_TA6NG2ycrgN_CQXj6_p2_PL0-UxO7CmDXSyq1P2cXf7PntI5y_3j7ObeYqSV2OaC7DcFlAjKkJLBoyty7qRBa-UlEIi4sIuUHDB8wU0wjSVLFVBVuYLir0pO9_OHXz_taYw6pULSG1rOurXQQtVllxKFcFiC25uDZ6sHrxbGf-jOeiNNr3UO216o02D0FFbzJ3tFpjooI06OnThL1zxGhSIyF1vOYrffjvyOqCjDqlxPhrVTe_-2fQLYYCF1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28661448</pqid></control><display><type>article</type><title>Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Vobornik, D. ; Margaritondo, G. ; Sanghera, J.S. ; Thielen, P. ; Aggarwal, I.D. ; Ivanov, B. ; Tolk, N.H. ; Manni, V. ; Grimaldi, S. ; Lisi, A. ; Rieti, S. ; Piston, D.W. ; Generosi, R. ; Luce, M. ; Perfetti, P. ; Cricenti, A.</creator><creatorcontrib>Vobornik, D. ; Margaritondo, G. ; Sanghera, J.S. ; Thielen, P. ; Aggarwal, I.D. ; Ivanov, B. ; Tolk, N.H. ; Manni, V. ; Grimaldi, S. ; Lisi, A. ; Rieti, S. ; Piston, D.W. ; Generosi, R. ; Luce, M. ; Perfetti, P. ; Cricenti, A.</creatorcontrib><description>Scanning near-field optical microscopy (SNOM or NSOM) is the technique with the highest lateral optical resolution available today, while infrared (IR) spectroscopy has a high chemical specificity. Combining SNOM with a tunable IR source produces a unique tool, IR-SNOM, capable of imaging distributions of chemical species with a 100 nm spatial resolution. We present in this paper boron nitride (BN) thin film images, where IR-SNOM shows the distribution of hexagonal and cubic phases within the sample. Exciting potential applications in biophysics and medical sciences are illustrated with SNOM images of the distribution of different chemical species within cells. We present in this article images with resolutions of the order of λ/60 with SNOM working with infrared light. With our SNOM setup, we routinely get optical resolutions between 50 and 150 nm, regardless of the wavelength of the light used to illuminate the sample.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2005.02.057</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Cells ; Condensed matter: structure, mechanical and thermal properties ; Electron, ion, and scanning probe microscopy ; Exact sciences and technology ; Infrared spectroscopy ; NSOM ; Physics ; Scanning probe microscopy: scanning tunneling, atomic force, scanning optical, magnetic force, etc ; SNOM ; Structure of solids and liquids; crystallography ; Thin film</subject><ispartof>Journal of alloys and compounds, 2005-09, Vol.401 (1), p.80-85</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-320f1f509cc8ecfea0af969d451784424cccbfbc21213b0d2ad74685ef43be213</citedby><cites>FETCH-LOGICAL-c417t-320f1f509cc8ecfea0af969d451784424cccbfbc21213b0d2ad74685ef43be213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2005.02.057$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17190802$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vobornik, D.</creatorcontrib><creatorcontrib>Margaritondo, G.</creatorcontrib><creatorcontrib>Sanghera, J.S.</creatorcontrib><creatorcontrib>Thielen, P.</creatorcontrib><creatorcontrib>Aggarwal, I.D.</creatorcontrib><creatorcontrib>Ivanov, B.</creatorcontrib><creatorcontrib>Tolk, N.H.</creatorcontrib><creatorcontrib>Manni, V.</creatorcontrib><creatorcontrib>Grimaldi, S.</creatorcontrib><creatorcontrib>Lisi, A.</creatorcontrib><creatorcontrib>Rieti, S.</creatorcontrib><creatorcontrib>Piston, D.W.</creatorcontrib><creatorcontrib>Generosi, R.</creatorcontrib><creatorcontrib>Luce, M.</creatorcontrib><creatorcontrib>Perfetti, P.</creatorcontrib><creatorcontrib>Cricenti, A.</creatorcontrib><title>Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)</title><title>Journal of alloys and compounds</title><description>Scanning near-field optical microscopy (SNOM or NSOM) is the technique with the highest lateral optical resolution available today, while infrared (IR) spectroscopy has a high chemical specificity. Combining SNOM with a tunable IR source produces a unique tool, IR-SNOM, capable of imaging distributions of chemical species with a 100 nm spatial resolution. We present in this paper boron nitride (BN) thin film images, where IR-SNOM shows the distribution of hexagonal and cubic phases within the sample. Exciting potential applications in biophysics and medical sciences are illustrated with SNOM images of the distribution of different chemical species within cells. We present in this article images with resolutions of the order of λ/60 with SNOM working with infrared light. With our SNOM setup, we routinely get optical resolutions between 50 and 150 nm, regardless of the wavelength of the light used to illuminate the sample.</description><subject>Cells</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electron, ion, and scanning probe microscopy</subject><subject>Exact sciences and technology</subject><subject>Infrared spectroscopy</subject><subject>NSOM</subject><subject>Physics</subject><subject>Scanning probe microscopy: scanning tunneling, atomic force, scanning optical, magnetic force, etc</subject><subject>SNOM</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Thin film</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKEXRQ-tkzRt05PI4hesCn6cQ3Y6kSzdtiZdwX9vll3w6GlgeN75eBg75ZBx4OXVMluatsV-lQmAIgORQVHtsQlXVZ7Ksqz32QRqUaQqV-qQHYWwBABe53zC7t8GwtH3AfvBYeI6642nJglous51n0lHxqfWUdsk_TA6NG2ycrgN_CQXj6_p2_PL0-UxO7CmDXSyq1P2cXf7PntI5y_3j7ObeYqSV2OaC7DcFlAjKkJLBoyty7qRBa-UlEIi4sIuUHDB8wU0wjSVLFVBVuYLir0pO9_OHXz_taYw6pULSG1rOurXQQtVllxKFcFiC25uDZ6sHrxbGf-jOeiNNr3UO216o02D0FFbzJ3tFpjooI06OnThL1zxGhSIyF1vOYrffjvyOqCjDqlxPhrVTe_-2fQLYYCF1g</recordid><startdate>20050929</startdate><enddate>20050929</enddate><creator>Vobornik, D.</creator><creator>Margaritondo, G.</creator><creator>Sanghera, J.S.</creator><creator>Thielen, P.</creator><creator>Aggarwal, I.D.</creator><creator>Ivanov, B.</creator><creator>Tolk, N.H.</creator><creator>Manni, V.</creator><creator>Grimaldi, S.</creator><creator>Lisi, A.</creator><creator>Rieti, S.</creator><creator>Piston, D.W.</creator><creator>Generosi, R.</creator><creator>Luce, M.</creator><creator>Perfetti, P.</creator><creator>Cricenti, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20050929</creationdate><title>Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)</title><author>Vobornik, D. ; Margaritondo, G. ; Sanghera, J.S. ; Thielen, P. ; Aggarwal, I.D. ; Ivanov, B. ; Tolk, N.H. ; Manni, V. ; Grimaldi, S. ; Lisi, A. ; Rieti, S. ; Piston, D.W. ; Generosi, R. ; Luce, M. ; Perfetti, P. ; Cricenti, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-320f1f509cc8ecfea0af969d451784424cccbfbc21213b0d2ad74685ef43be213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cells</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electron, ion, and scanning probe microscopy</topic><topic>Exact sciences and technology</topic><topic>Infrared spectroscopy</topic><topic>NSOM</topic><topic>Physics</topic><topic>Scanning probe microscopy: scanning tunneling, atomic force, scanning optical, magnetic force, etc</topic><topic>SNOM</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Thin film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vobornik, D.</creatorcontrib><creatorcontrib>Margaritondo, G.</creatorcontrib><creatorcontrib>Sanghera, J.S.</creatorcontrib><creatorcontrib>Thielen, P.</creatorcontrib><creatorcontrib>Aggarwal, I.D.</creatorcontrib><creatorcontrib>Ivanov, B.</creatorcontrib><creatorcontrib>Tolk, N.H.</creatorcontrib><creatorcontrib>Manni, V.</creatorcontrib><creatorcontrib>Grimaldi, S.</creatorcontrib><creatorcontrib>Lisi, A.</creatorcontrib><creatorcontrib>Rieti, S.</creatorcontrib><creatorcontrib>Piston, D.W.</creatorcontrib><creatorcontrib>Generosi, R.</creatorcontrib><creatorcontrib>Luce, M.</creatorcontrib><creatorcontrib>Perfetti, P.</creatorcontrib><creatorcontrib>Cricenti, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vobornik, D.</au><au>Margaritondo, G.</au><au>Sanghera, J.S.</au><au>Thielen, P.</au><au>Aggarwal, I.D.</au><au>Ivanov, B.</au><au>Tolk, N.H.</au><au>Manni, V.</au><au>Grimaldi, S.</au><au>Lisi, A.</au><au>Rieti, S.</au><au>Piston, D.W.</au><au>Generosi, R.</au><au>Luce, M.</au><au>Perfetti, P.</au><au>Cricenti, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2005-09-29</date><risdate>2005</risdate><volume>401</volume><issue>1</issue><spage>80</spage><epage>85</epage><pages>80-85</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Scanning near-field optical microscopy (SNOM or NSOM) is the technique with the highest lateral optical resolution available today, while infrared (IR) spectroscopy has a high chemical specificity. Combining SNOM with a tunable IR source produces a unique tool, IR-SNOM, capable of imaging distributions of chemical species with a 100 nm spatial resolution. We present in this paper boron nitride (BN) thin film images, where IR-SNOM shows the distribution of hexagonal and cubic phases within the sample. Exciting potential applications in biophysics and medical sciences are illustrated with SNOM images of the distribution of different chemical species within cells. We present in this article images with resolutions of the order of λ/60 with SNOM working with infrared light. With our SNOM setup, we routinely get optical resolutions between 50 and 150 nm, regardless of the wavelength of the light used to illuminate the sample.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2005.02.057</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2005-09, Vol.401 (1), p.80-85
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_miscellaneous_28661448
source Elsevier ScienceDirect Journals Complete
subjects Cells
Condensed matter: structure, mechanical and thermal properties
Electron, ion, and scanning probe microscopy
Exact sciences and technology
Infrared spectroscopy
NSOM
Physics
Scanning probe microscopy: scanning tunneling, atomic force, scanning optical, magnetic force, etc
SNOM
Structure of solids and liquids
crystallography
Thin film
title Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectroscopic%20infrared%20scanning%20near-field%20optical%20microscopy%20(IR-SNOM)&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Vobornik,%20D.&rft.date=2005-09-29&rft.volume=401&rft.issue=1&rft.spage=80&rft.epage=85&rft.pages=80-85&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2005.02.057&rft_dat=%3Cproquest_cross%3E28661448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28661448&rft_id=info:pmid/&rft_els_id=S0925838805003877&rfr_iscdi=true