Single-molecule analysis of osmolyte-mediated nanomechanical unfolding behavior of a protein domain

The small organic molecules, known as osmolytes being ubiquitously present in different cell types, affect protein folding, stability and aggregation. However, it is unknown how the osmolytes affect the nanomechanical unfolding behavior of protein domain. Here, we show the osmolyte-dependent mechani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-12, Vol.253, p.126849-126849, Article 126849
Hauptverfasser: Bajaj, Manish, Muddassir, Mohd, Choi, Bumjoon, Singh, Priyanka, Park, Jong Bum, Singh, Surjeet, Yadav, Manisha, Kumar, Rajesh, Eom, Kilho, Sharma, Deepak
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126849
container_issue
container_start_page 126849
container_title International journal of biological macromolecules
container_volume 253
creator Bajaj, Manish
Muddassir, Mohd
Choi, Bumjoon
Singh, Priyanka
Park, Jong Bum
Singh, Surjeet
Yadav, Manisha
Kumar, Rajesh
Eom, Kilho
Sharma, Deepak
description The small organic molecules, known as osmolytes being ubiquitously present in different cell types, affect protein folding, stability and aggregation. However, it is unknown how the osmolytes affect the nanomechanical unfolding behavior of protein domain. Here, we show the osmolyte-dependent mechanical unfolding properties of protein titin immunoglobulin-27 (I27) domain using an atomic force microscopy (AFM)-based single-molecule force spectroscopy. We found that amines and methylamines improved the mechanical stability of I27 domain, whereas polyols had no effect. Interestingly, glycine betaine (GB) or trimethylamine-N-oxide (TMAO) increased the average unfolding force of the protein domain. The kinetic parameters analyzed at single-molecule level reveal that stabilizing effect of osmolytes is due to a decrease in the unfolding rate constant of I27, which was confirmed by molecular dynamics simulations. Our study reveals different effects that diverse osmolytes have on the mechanical properties of the protein, and suggests the potential use of osmolytes in modulating the mechanical stability of proteins required for various nano-biotechnological applications.
doi_str_mv 10.1016/j.ijbiomac.2023.126849
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2866113473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866113473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-765fb3b0c92cf807c6e516e33e155535abf5d4aec25c1ab8c4ac5b2d72d332243</originalsourceid><addsrcrecordid>eNo1kM1LxDAQxYMouK7-C5Kjl9Z8NGn3KItfsOBBPYdpOnVT0mRtWmH_e7tUTwNv3rx5_Ai55SznjOv7Lndd7WIPNhdMyJwLXRWbM7LiVbnJGGPynKwYL3hWcckuyVVK3axqxasVse8ufHnM-ujRTh4pBPDH5BKNLY1plo_jvMXGwYgNDRBij3YPwVnwdApt9M2cQGvcw4-Lw-kM6GGII7pAm7mVC9fkogWf8OZvrsnn0-PH9iXbvT2_bh92mRVSjVmpVVvLmtmNsG3FSqtRcY1SIldKSQV1q5oC0AplOdSVLcCqWjSlaKQUopBrcrfkzu-_J0yj6V2y6D0EjFMyotKac1mUcrbqxWqHmNKArTkMrofhaDgzJ6qmM_9UzYmqWajKX_DEcAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866113473</pqid></control><display><type>article</type><title>Single-molecule analysis of osmolyte-mediated nanomechanical unfolding behavior of a protein domain</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bajaj, Manish ; Muddassir, Mohd ; Choi, Bumjoon ; Singh, Priyanka ; Park, Jong Bum ; Singh, Surjeet ; Yadav, Manisha ; Kumar, Rajesh ; Eom, Kilho ; Sharma, Deepak</creator><creatorcontrib>Bajaj, Manish ; Muddassir, Mohd ; Choi, Bumjoon ; Singh, Priyanka ; Park, Jong Bum ; Singh, Surjeet ; Yadav, Manisha ; Kumar, Rajesh ; Eom, Kilho ; Sharma, Deepak</creatorcontrib><description>The small organic molecules, known as osmolytes being ubiquitously present in different cell types, affect protein folding, stability and aggregation. However, it is unknown how the osmolytes affect the nanomechanical unfolding behavior of protein domain. Here, we show the osmolyte-dependent mechanical unfolding properties of protein titin immunoglobulin-27 (I27) domain using an atomic force microscopy (AFM)-based single-molecule force spectroscopy. We found that amines and methylamines improved the mechanical stability of I27 domain, whereas polyols had no effect. Interestingly, glycine betaine (GB) or trimethylamine-N-oxide (TMAO) increased the average unfolding force of the protein domain. The kinetic parameters analyzed at single-molecule level reveal that stabilizing effect of osmolytes is due to a decrease in the unfolding rate constant of I27, which was confirmed by molecular dynamics simulations. Our study reveals different effects that diverse osmolytes have on the mechanical properties of the protein, and suggests the potential use of osmolytes in modulating the mechanical stability of proteins required for various nano-biotechnological applications.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2023.126849</identifier><language>eng</language><ispartof>International journal of biological macromolecules, 2023-12, Vol.253, p.126849-126849, Article 126849</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-765fb3b0c92cf807c6e516e33e155535abf5d4aec25c1ab8c4ac5b2d72d332243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bajaj, Manish</creatorcontrib><creatorcontrib>Muddassir, Mohd</creatorcontrib><creatorcontrib>Choi, Bumjoon</creatorcontrib><creatorcontrib>Singh, Priyanka</creatorcontrib><creatorcontrib>Park, Jong Bum</creatorcontrib><creatorcontrib>Singh, Surjeet</creatorcontrib><creatorcontrib>Yadav, Manisha</creatorcontrib><creatorcontrib>Kumar, Rajesh</creatorcontrib><creatorcontrib>Eom, Kilho</creatorcontrib><creatorcontrib>Sharma, Deepak</creatorcontrib><title>Single-molecule analysis of osmolyte-mediated nanomechanical unfolding behavior of a protein domain</title><title>International journal of biological macromolecules</title><description>The small organic molecules, known as osmolytes being ubiquitously present in different cell types, affect protein folding, stability and aggregation. However, it is unknown how the osmolytes affect the nanomechanical unfolding behavior of protein domain. Here, we show the osmolyte-dependent mechanical unfolding properties of protein titin immunoglobulin-27 (I27) domain using an atomic force microscopy (AFM)-based single-molecule force spectroscopy. We found that amines and methylamines improved the mechanical stability of I27 domain, whereas polyols had no effect. Interestingly, glycine betaine (GB) or trimethylamine-N-oxide (TMAO) increased the average unfolding force of the protein domain. The kinetic parameters analyzed at single-molecule level reveal that stabilizing effect of osmolytes is due to a decrease in the unfolding rate constant of I27, which was confirmed by molecular dynamics simulations. Our study reveals different effects that diverse osmolytes have on the mechanical properties of the protein, and suggests the potential use of osmolytes in modulating the mechanical stability of proteins required for various nano-biotechnological applications.</description><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo1kM1LxDAQxYMouK7-C5Kjl9Z8NGn3KItfsOBBPYdpOnVT0mRtWmH_e7tUTwNv3rx5_Ai55SznjOv7Lndd7WIPNhdMyJwLXRWbM7LiVbnJGGPynKwYL3hWcckuyVVK3axqxasVse8ufHnM-ujRTh4pBPDH5BKNLY1plo_jvMXGwYgNDRBij3YPwVnwdApt9M2cQGvcw4-Lw-kM6GGII7pAm7mVC9fkogWf8OZvrsnn0-PH9iXbvT2_bh92mRVSjVmpVVvLmtmNsG3FSqtRcY1SIldKSQV1q5oC0AplOdSVLcCqWjSlaKQUopBrcrfkzu-_J0yj6V2y6D0EjFMyotKac1mUcrbqxWqHmNKArTkMrofhaDgzJ6qmM_9UzYmqWajKX_DEcAA</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Bajaj, Manish</creator><creator>Muddassir, Mohd</creator><creator>Choi, Bumjoon</creator><creator>Singh, Priyanka</creator><creator>Park, Jong Bum</creator><creator>Singh, Surjeet</creator><creator>Yadav, Manisha</creator><creator>Kumar, Rajesh</creator><creator>Eom, Kilho</creator><creator>Sharma, Deepak</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20231231</creationdate><title>Single-molecule analysis of osmolyte-mediated nanomechanical unfolding behavior of a protein domain</title><author>Bajaj, Manish ; Muddassir, Mohd ; Choi, Bumjoon ; Singh, Priyanka ; Park, Jong Bum ; Singh, Surjeet ; Yadav, Manisha ; Kumar, Rajesh ; Eom, Kilho ; Sharma, Deepak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-765fb3b0c92cf807c6e516e33e155535abf5d4aec25c1ab8c4ac5b2d72d332243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bajaj, Manish</creatorcontrib><creatorcontrib>Muddassir, Mohd</creatorcontrib><creatorcontrib>Choi, Bumjoon</creatorcontrib><creatorcontrib>Singh, Priyanka</creatorcontrib><creatorcontrib>Park, Jong Bum</creatorcontrib><creatorcontrib>Singh, Surjeet</creatorcontrib><creatorcontrib>Yadav, Manisha</creatorcontrib><creatorcontrib>Kumar, Rajesh</creatorcontrib><creatorcontrib>Eom, Kilho</creatorcontrib><creatorcontrib>Sharma, Deepak</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bajaj, Manish</au><au>Muddassir, Mohd</au><au>Choi, Bumjoon</au><au>Singh, Priyanka</au><au>Park, Jong Bum</au><au>Singh, Surjeet</au><au>Yadav, Manisha</au><au>Kumar, Rajesh</au><au>Eom, Kilho</au><au>Sharma, Deepak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-molecule analysis of osmolyte-mediated nanomechanical unfolding behavior of a protein domain</atitle><jtitle>International journal of biological macromolecules</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>253</volume><spage>126849</spage><epage>126849</epage><pages>126849-126849</pages><artnum>126849</artnum><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>The small organic molecules, known as osmolytes being ubiquitously present in different cell types, affect protein folding, stability and aggregation. However, it is unknown how the osmolytes affect the nanomechanical unfolding behavior of protein domain. Here, we show the osmolyte-dependent mechanical unfolding properties of protein titin immunoglobulin-27 (I27) domain using an atomic force microscopy (AFM)-based single-molecule force spectroscopy. We found that amines and methylamines improved the mechanical stability of I27 domain, whereas polyols had no effect. Interestingly, glycine betaine (GB) or trimethylamine-N-oxide (TMAO) increased the average unfolding force of the protein domain. The kinetic parameters analyzed at single-molecule level reveal that stabilizing effect of osmolytes is due to a decrease in the unfolding rate constant of I27, which was confirmed by molecular dynamics simulations. Our study reveals different effects that diverse osmolytes have on the mechanical properties of the protein, and suggests the potential use of osmolytes in modulating the mechanical stability of proteins required for various nano-biotechnological applications.</abstract><doi>10.1016/j.ijbiomac.2023.126849</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2023-12, Vol.253, p.126849-126849, Article 126849
issn 0141-8130
1879-0003
language eng
recordid cdi_proquest_miscellaneous_2866113473
source Access via ScienceDirect (Elsevier)
title Single-molecule analysis of osmolyte-mediated nanomechanical unfolding behavior of a protein domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-molecule%20analysis%20of%20osmolyte-mediated%20nanomechanical%20unfolding%20behavior%20of%20a%20protein%20domain&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Bajaj,%20Manish&rft.date=2023-12-31&rft.volume=253&rft.spage=126849&rft.epage=126849&rft.pages=126849-126849&rft.artnum=126849&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2023.126849&rft_dat=%3Cproquest_cross%3E2866113473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866113473&rft_id=info:pmid/&rfr_iscdi=true