Soil acidification suppresses phosphorus supply through enhancing organomineral association

It has long been assumed that soil acidification increases reactive iron and/or aluminum (Fe/Al) oxides and promotes Pi sorption onto mineral surfaces, resulting in a decrease in Pi. However, this assumption has seldom been tested in long-term field experiments. Using a 12-year acid addition experim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-12, Vol.905, p.167105-167105, Article 167105
Hauptverfasser: Hu, Yuanliu, Chen, Ji, Hui, Dafeng, Li, Jianling, Yao, Xianyu, Zhang, Deqiang, Deng, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167105
container_issue
container_start_page 167105
container_title The Science of the total environment
container_volume 905
creator Hu, Yuanliu
Chen, Ji
Hui, Dafeng
Li, Jianling
Yao, Xianyu
Zhang, Deqiang
Deng, Qi
description It has long been assumed that soil acidification increases reactive iron and/or aluminum (Fe/Al) oxides and promotes Pi sorption onto mineral surfaces, resulting in a decrease in Pi. However, this assumption has seldom been tested in long-term field experiments. Using a 12-year acid addition experiment in a tropical forest, we demonstrated that soil acidification increased the content of noncrystalline Fe and Al oxides by 16.3 % and 27.7 %, respectively; whereas it did not alter the absorbed Pi pool and Pi sorption capacity. Furthermore, soil acidification increased the Fe/Al-bound organic matter content by 82.5 %, causing a 54.9 % reduction in Pi desorption, a 42.3 % decrease in soluble Pi content, and a 9.2 % increase in occluded Pi content. Our findings demonstrate that soil acidification reduces Pi bioavailability by repressing Pi desorption rather than enhancing Pi sorption. These results could be attributed to the enhanced organomineral association, which competes for sorption sites with Pi and promotes the Pi occlusion. However, the interactions between organomineral-Pi have not been incorporated into global land models, which may overestimate ecosystem productivity under future acid rain scenarios. [Display omitted] •We conducted a 12-year simulated acid rain experiment to investigate soil Pi supply.•Prolonged acid rain reduces soil Pi bioavailability and supply capacity.•Soil Pi bioavailability is mainly regulated by desorption, rather than sorption.•Enhanced organomineral association reduces soil Pi supply.•Ignoring organomineral-Pi may overestimate ecosystem productivity under acid rain.
doi_str_mv 10.1016/j.scitotenv.2023.167105
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2866113099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969723057327</els_id><sourcerecordid>3040468841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-82817b7e3f9634d028a49fcbc68fbf719d1691c479909cf4550ed86730d47e8a3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78Bnv00nXSZvNxFPELBA_qyUPIptPdLN2kZlrBf2_XFa8ODAPDMy_Mw9gFhzkHLq82c_JhSAPGz3kFVT3nUnFYHLAZ18qUHCp5yGYAQpdGGnXMTog2MJXSfMbeX1LoCudDE9rg3RBSLGjs-4xESEW_TjR1Huln230VwzqncbUuMK5d9CGuipRXLqZtiJjdFEWUfPgJOmNHresIz3_nKXu7u329eSifnu8fb66fSi9qGEpdaa6WCuvWyFo0UGknTOuXXup22SpuGi4N90IZA8a3YrEAbLRUNTRCoXb1Kbvc5_Y5fYxIg90G8th1LmIaydYgQEitBf8XrbSUnNdgzISqPepzIsrY2j6HrctfloPdmbcb-2fe7szbvfnp8np_idPTnwHzjsPosQkZ_WCbFP7N-AYe_ZL5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866113099</pqid></control><display><type>article</type><title>Soil acidification suppresses phosphorus supply through enhancing organomineral association</title><source>Elsevier ScienceDirect Journals</source><creator>Hu, Yuanliu ; Chen, Ji ; Hui, Dafeng ; Li, Jianling ; Yao, Xianyu ; Zhang, Deqiang ; Deng, Qi</creator><creatorcontrib>Hu, Yuanliu ; Chen, Ji ; Hui, Dafeng ; Li, Jianling ; Yao, Xianyu ; Zhang, Deqiang ; Deng, Qi</creatorcontrib><description>It has long been assumed that soil acidification increases reactive iron and/or aluminum (Fe/Al) oxides and promotes Pi sorption onto mineral surfaces, resulting in a decrease in Pi. However, this assumption has seldom been tested in long-term field experiments. Using a 12-year acid addition experiment in a tropical forest, we demonstrated that soil acidification increased the content of noncrystalline Fe and Al oxides by 16.3 % and 27.7 %, respectively; whereas it did not alter the absorbed Pi pool and Pi sorption capacity. Furthermore, soil acidification increased the Fe/Al-bound organic matter content by 82.5 %, causing a 54.9 % reduction in Pi desorption, a 42.3 % decrease in soluble Pi content, and a 9.2 % increase in occluded Pi content. Our findings demonstrate that soil acidification reduces Pi bioavailability by repressing Pi desorption rather than enhancing Pi sorption. These results could be attributed to the enhanced organomineral association, which competes for sorption sites with Pi and promotes the Pi occlusion. However, the interactions between organomineral-Pi have not been incorporated into global land models, which may overestimate ecosystem productivity under future acid rain scenarios. [Display omitted] •We conducted a 12-year simulated acid rain experiment to investigate soil Pi supply.•Prolonged acid rain reduces soil Pi bioavailability and supply capacity.•Soil Pi bioavailability is mainly regulated by desorption, rather than sorption.•Enhanced organomineral association reduces soil Pi supply.•Ignoring organomineral-Pi may overestimate ecosystem productivity under acid rain.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2023.167105</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acid rain ; aluminum ; bioavailability ; Competitive sorption ; desorption ; ecosystems ; environment ; iron ; Mineral-associated carbon ; organic matter ; phosphorus ; Phosphorus fractions ; soil acidification ; sorption ; tropical forests ; Weathered soils</subject><ispartof>The Science of the total environment, 2023-12, Vol.905, p.167105-167105, Article 167105</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-82817b7e3f9634d028a49fcbc68fbf719d1691c479909cf4550ed86730d47e8a3</citedby><cites>FETCH-LOGICAL-c430t-82817b7e3f9634d028a49fcbc68fbf719d1691c479909cf4550ed86730d47e8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969723057327$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Hu, Yuanliu</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Hui, Dafeng</creatorcontrib><creatorcontrib>Li, Jianling</creatorcontrib><creatorcontrib>Yao, Xianyu</creatorcontrib><creatorcontrib>Zhang, Deqiang</creatorcontrib><creatorcontrib>Deng, Qi</creatorcontrib><title>Soil acidification suppresses phosphorus supply through enhancing organomineral association</title><title>The Science of the total environment</title><description>It has long been assumed that soil acidification increases reactive iron and/or aluminum (Fe/Al) oxides and promotes Pi sorption onto mineral surfaces, resulting in a decrease in Pi. However, this assumption has seldom been tested in long-term field experiments. Using a 12-year acid addition experiment in a tropical forest, we demonstrated that soil acidification increased the content of noncrystalline Fe and Al oxides by 16.3 % and 27.7 %, respectively; whereas it did not alter the absorbed Pi pool and Pi sorption capacity. Furthermore, soil acidification increased the Fe/Al-bound organic matter content by 82.5 %, causing a 54.9 % reduction in Pi desorption, a 42.3 % decrease in soluble Pi content, and a 9.2 % increase in occluded Pi content. Our findings demonstrate that soil acidification reduces Pi bioavailability by repressing Pi desorption rather than enhancing Pi sorption. These results could be attributed to the enhanced organomineral association, which competes for sorption sites with Pi and promotes the Pi occlusion. However, the interactions between organomineral-Pi have not been incorporated into global land models, which may overestimate ecosystem productivity under future acid rain scenarios. [Display omitted] •We conducted a 12-year simulated acid rain experiment to investigate soil Pi supply.•Prolonged acid rain reduces soil Pi bioavailability and supply capacity.•Soil Pi bioavailability is mainly regulated by desorption, rather than sorption.•Enhanced organomineral association reduces soil Pi supply.•Ignoring organomineral-Pi may overestimate ecosystem productivity under acid rain.</description><subject>Acid rain</subject><subject>aluminum</subject><subject>bioavailability</subject><subject>Competitive sorption</subject><subject>desorption</subject><subject>ecosystems</subject><subject>environment</subject><subject>iron</subject><subject>Mineral-associated carbon</subject><subject>organic matter</subject><subject>phosphorus</subject><subject>Phosphorus fractions</subject><subject>soil acidification</subject><subject>sorption</subject><subject>tropical forests</subject><subject>Weathered soils</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouH78Bnv00nXSZvNxFPELBA_qyUPIptPdLN2kZlrBf2_XFa8ODAPDMy_Mw9gFhzkHLq82c_JhSAPGz3kFVT3nUnFYHLAZ18qUHCp5yGYAQpdGGnXMTog2MJXSfMbeX1LoCudDE9rg3RBSLGjs-4xESEW_TjR1Huln230VwzqncbUuMK5d9CGuipRXLqZtiJjdFEWUfPgJOmNHresIz3_nKXu7u329eSifnu8fb66fSi9qGEpdaa6WCuvWyFo0UGknTOuXXup22SpuGi4N90IZA8a3YrEAbLRUNTRCoXb1Kbvc5_Y5fYxIg90G8th1LmIaydYgQEitBf8XrbSUnNdgzISqPepzIsrY2j6HrctfloPdmbcb-2fe7szbvfnp8np_idPTnwHzjsPosQkZ_WCbFP7N-AYe_ZL5</recordid><startdate>20231220</startdate><enddate>20231220</enddate><creator>Hu, Yuanliu</creator><creator>Chen, Ji</creator><creator>Hui, Dafeng</creator><creator>Li, Jianling</creator><creator>Yao, Xianyu</creator><creator>Zhang, Deqiang</creator><creator>Deng, Qi</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20231220</creationdate><title>Soil acidification suppresses phosphorus supply through enhancing organomineral association</title><author>Hu, Yuanliu ; Chen, Ji ; Hui, Dafeng ; Li, Jianling ; Yao, Xianyu ; Zhang, Deqiang ; Deng, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-82817b7e3f9634d028a49fcbc68fbf719d1691c479909cf4550ed86730d47e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acid rain</topic><topic>aluminum</topic><topic>bioavailability</topic><topic>Competitive sorption</topic><topic>desorption</topic><topic>ecosystems</topic><topic>environment</topic><topic>iron</topic><topic>Mineral-associated carbon</topic><topic>organic matter</topic><topic>phosphorus</topic><topic>Phosphorus fractions</topic><topic>soil acidification</topic><topic>sorption</topic><topic>tropical forests</topic><topic>Weathered soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yuanliu</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Hui, Dafeng</creatorcontrib><creatorcontrib>Li, Jianling</creatorcontrib><creatorcontrib>Yao, Xianyu</creatorcontrib><creatorcontrib>Zhang, Deqiang</creatorcontrib><creatorcontrib>Deng, Qi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yuanliu</au><au>Chen, Ji</au><au>Hui, Dafeng</au><au>Li, Jianling</au><au>Yao, Xianyu</au><au>Zhang, Deqiang</au><au>Deng, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil acidification suppresses phosphorus supply through enhancing organomineral association</atitle><jtitle>The Science of the total environment</jtitle><date>2023-12-20</date><risdate>2023</risdate><volume>905</volume><spage>167105</spage><epage>167105</epage><pages>167105-167105</pages><artnum>167105</artnum><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>It has long been assumed that soil acidification increases reactive iron and/or aluminum (Fe/Al) oxides and promotes Pi sorption onto mineral surfaces, resulting in a decrease in Pi. However, this assumption has seldom been tested in long-term field experiments. Using a 12-year acid addition experiment in a tropical forest, we demonstrated that soil acidification increased the content of noncrystalline Fe and Al oxides by 16.3 % and 27.7 %, respectively; whereas it did not alter the absorbed Pi pool and Pi sorption capacity. Furthermore, soil acidification increased the Fe/Al-bound organic matter content by 82.5 %, causing a 54.9 % reduction in Pi desorption, a 42.3 % decrease in soluble Pi content, and a 9.2 % increase in occluded Pi content. Our findings demonstrate that soil acidification reduces Pi bioavailability by repressing Pi desorption rather than enhancing Pi sorption. These results could be attributed to the enhanced organomineral association, which competes for sorption sites with Pi and promotes the Pi occlusion. However, the interactions between organomineral-Pi have not been incorporated into global land models, which may overestimate ecosystem productivity under future acid rain scenarios. [Display omitted] •We conducted a 12-year simulated acid rain experiment to investigate soil Pi supply.•Prolonged acid rain reduces soil Pi bioavailability and supply capacity.•Soil Pi bioavailability is mainly regulated by desorption, rather than sorption.•Enhanced organomineral association reduces soil Pi supply.•Ignoring organomineral-Pi may overestimate ecosystem productivity under acid rain.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.scitotenv.2023.167105</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2023-12, Vol.905, p.167105-167105, Article 167105
issn 0048-9697
1879-1026
language eng
recordid cdi_proquest_miscellaneous_2866113099
source Elsevier ScienceDirect Journals
subjects Acid rain
aluminum
bioavailability
Competitive sorption
desorption
ecosystems
environment
iron
Mineral-associated carbon
organic matter
phosphorus
Phosphorus fractions
soil acidification
sorption
tropical forests
Weathered soils
title Soil acidification suppresses phosphorus supply through enhancing organomineral association
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20acidification%20suppresses%20phosphorus%20supply%20through%20enhancing%20organomineral%20association&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Hu,%20Yuanliu&rft.date=2023-12-20&rft.volume=905&rft.spage=167105&rft.epage=167105&rft.pages=167105-167105&rft.artnum=167105&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2023.167105&rft_dat=%3Cproquest_cross%3E3040468841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866113099&rft_id=info:pmid/&rft_els_id=S0048969723057327&rfr_iscdi=true