A New Approach for Exploring Reperfusion Brain Damage in Hypoxic Ischemic Encephalopathy

Reperfusion is an essential pathological stage in hypoxic ischemic encephalopathy (HIE). Although the Rice-Vannucci model is widely used in HIE research, it remains difficult to replicate HIE-related reperfusion brain injury. The purpose of this study is to establish a rat model of hypoxia ischemia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2024-03, Vol.61 (3), p.1417-1432
Hauptverfasser: Zhang, Tianlei, Zhang, Zhiwei, Geng, Jiayi, Lin, Kexin, Lin, Xinru, Jiao, Mengdie, Zhu, Jianghu, Guo, Xiaoling, Lin, Zhenlang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1432
container_issue 3
container_start_page 1417
container_title Molecular neurobiology
container_volume 61
creator Zhang, Tianlei
Zhang, Zhiwei
Geng, Jiayi
Lin, Kexin
Lin, Xinru
Jiao, Mengdie
Zhu, Jianghu
Guo, Xiaoling
Lin, Zhenlang
description Reperfusion is an essential pathological stage in hypoxic ischemic encephalopathy (HIE). Although the Rice-Vannucci model is widely used in HIE research, it remains difficult to replicate HIE-related reperfusion brain injury. The purpose of this study is to establish a rat model of hypoxia ischemia reperfusion brain damage (HIRBD) using a common carotid artery (CCA) muscle bridge in order to investigate the mechanisms of cerebral resistance to hypoxic-ischemic and reperfusion brain damage. Random assignment of Sprague–Dawley (SD) rats to the Sham, HIRBD, and Rice-Vannucci groups. Changes in body weight, mortality rate, spontaneous alternation behavior test (SAB test), and dynamic changes in cerebral blood flow (CBF) were detected. The damaged cerebral cortices were extracted for morphological comparison, transcriptomic analysis, and quantitative real-time PCR. Harvesting the hippocampus for transmission electron microscopy (TEM) detection. As a result, CCA muscle bridge could effectively block CBF, which recovered after the muscle bridge detachment. Pathological comparison, the SAB test, and TEM analysis revealed that brain damage in Rice-Vannucci was more severe than HIRBD. Gpx1, S100a6, Cldn5, Esr1, and Gfap were highly expressed in both HIRBD and Rice-Vannucci. In conclusion, the CCA muscle bridge-established HIRBD model could be used as an innovative and dependable model to simulate pathological process of HIRBD. Graphical Abstract
doi_str_mv 10.1007/s12035-023-03645-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2866112135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866112135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-a0ef3fec7240f7a524802e2396fe0ca844c4cb4387d1b0772aa2717b6548f8273</originalsourceid><addsrcrecordid>eNp9kMFuFDEMhiMEokvpC3BAkbhwGZo4mSRzXMpCK1UgoSL1FmVTpzvVzCQkO6L79qTd0ko9cLIPn3_bHyHvOPvEGdPHhQMTbcNANEwo2TbdC7Lgbds1nBt4SRbMdKLRSpoD8qaUG8YAONOvyYHQGrgyZkEul_Q7_qHLlHJ0fkNDzHR1m4aY--ma_sSEOcyljxP9nF0_0S9udNdIa3e6S_G29_Ss-A2OtVlNHtPGDTG57Wb3lrwKbih49FAPya-vq4uT0-b8x7ezk-V54wWobeMYBhHQa5AsaNeCNAwQRKcCMu-MlF76tRRGX_E1q2c7B5rrtWqlCQa0OCQf97n1gd8zlq0d--JxGNyEcS4WjFKcAxdtRT88Q2_inKd6nYVOcKMkb0WlYE_5HEvJGGzK_ejyznJm77zbvXdbvdt777arQ-8fouf1iFePI_9EV0DsgZLuzGJ-2v2f2L_qLowm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931864153</pqid></control><display><type>article</type><title>A New Approach for Exploring Reperfusion Brain Damage in Hypoxic Ischemic Encephalopathy</title><source>SpringerNature Journals</source><creator>Zhang, Tianlei ; Zhang, Zhiwei ; Geng, Jiayi ; Lin, Kexin ; Lin, Xinru ; Jiao, Mengdie ; Zhu, Jianghu ; Guo, Xiaoling ; Lin, Zhenlang</creator><creatorcontrib>Zhang, Tianlei ; Zhang, Zhiwei ; Geng, Jiayi ; Lin, Kexin ; Lin, Xinru ; Jiao, Mengdie ; Zhu, Jianghu ; Guo, Xiaoling ; Lin, Zhenlang</creatorcontrib><description>Reperfusion is an essential pathological stage in hypoxic ischemic encephalopathy (HIE). Although the Rice-Vannucci model is widely used in HIE research, it remains difficult to replicate HIE-related reperfusion brain injury. The purpose of this study is to establish a rat model of hypoxia ischemia reperfusion brain damage (HIRBD) using a common carotid artery (CCA) muscle bridge in order to investigate the mechanisms of cerebral resistance to hypoxic-ischemic and reperfusion brain damage. Random assignment of Sprague–Dawley (SD) rats to the Sham, HIRBD, and Rice-Vannucci groups. Changes in body weight, mortality rate, spontaneous alternation behavior test (SAB test), and dynamic changes in cerebral blood flow (CBF) were detected. The damaged cerebral cortices were extracted for morphological comparison, transcriptomic analysis, and quantitative real-time PCR. Harvesting the hippocampus for transmission electron microscopy (TEM) detection. As a result, CCA muscle bridge could effectively block CBF, which recovered after the muscle bridge detachment. Pathological comparison, the SAB test, and TEM analysis revealed that brain damage in Rice-Vannucci was more severe than HIRBD. Gpx1, S100a6, Cldn5, Esr1, and Gfap were highly expressed in both HIRBD and Rice-Vannucci. In conclusion, the CCA muscle bridge-established HIRBD model could be used as an innovative and dependable model to simulate pathological process of HIRBD. Graphical Abstract</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-023-03645-9</identifier><identifier>PMID: 37721688</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Blood flow ; Body weight ; Brain damage ; Brain injury ; Carotid artery ; Cell Biology ; Cerebral blood flow ; Encephalopathy ; ESR1 protein ; Hypoxia ; Ischemia ; Neurobiology ; Neurology ; Neurosciences ; Reperfusion ; Rice ; Spontaneous alternation ; Transcriptomics ; Transmission electron microscopy</subject><ispartof>Molecular neurobiology, 2024-03, Vol.61 (3), p.1417-1432</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-a0ef3fec7240f7a524802e2396fe0ca844c4cb4387d1b0772aa2717b6548f8273</cites><orcidid>0000-0001-6850-0018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-023-03645-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-023-03645-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37721688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Tianlei</creatorcontrib><creatorcontrib>Zhang, Zhiwei</creatorcontrib><creatorcontrib>Geng, Jiayi</creatorcontrib><creatorcontrib>Lin, Kexin</creatorcontrib><creatorcontrib>Lin, Xinru</creatorcontrib><creatorcontrib>Jiao, Mengdie</creatorcontrib><creatorcontrib>Zhu, Jianghu</creatorcontrib><creatorcontrib>Guo, Xiaoling</creatorcontrib><creatorcontrib>Lin, Zhenlang</creatorcontrib><title>A New Approach for Exploring Reperfusion Brain Damage in Hypoxic Ischemic Encephalopathy</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Reperfusion is an essential pathological stage in hypoxic ischemic encephalopathy (HIE). Although the Rice-Vannucci model is widely used in HIE research, it remains difficult to replicate HIE-related reperfusion brain injury. The purpose of this study is to establish a rat model of hypoxia ischemia reperfusion brain damage (HIRBD) using a common carotid artery (CCA) muscle bridge in order to investigate the mechanisms of cerebral resistance to hypoxic-ischemic and reperfusion brain damage. Random assignment of Sprague–Dawley (SD) rats to the Sham, HIRBD, and Rice-Vannucci groups. Changes in body weight, mortality rate, spontaneous alternation behavior test (SAB test), and dynamic changes in cerebral blood flow (CBF) were detected. The damaged cerebral cortices were extracted for morphological comparison, transcriptomic analysis, and quantitative real-time PCR. Harvesting the hippocampus for transmission electron microscopy (TEM) detection. As a result, CCA muscle bridge could effectively block CBF, which recovered after the muscle bridge detachment. Pathological comparison, the SAB test, and TEM analysis revealed that brain damage in Rice-Vannucci was more severe than HIRBD. Gpx1, S100a6, Cldn5, Esr1, and Gfap were highly expressed in both HIRBD and Rice-Vannucci. In conclusion, the CCA muscle bridge-established HIRBD model could be used as an innovative and dependable model to simulate pathological process of HIRBD. Graphical Abstract</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood flow</subject><subject>Body weight</subject><subject>Brain damage</subject><subject>Brain injury</subject><subject>Carotid artery</subject><subject>Cell Biology</subject><subject>Cerebral blood flow</subject><subject>Encephalopathy</subject><subject>ESR1 protein</subject><subject>Hypoxia</subject><subject>Ischemia</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Reperfusion</subject><subject>Rice</subject><subject>Spontaneous alternation</subject><subject>Transcriptomics</subject><subject>Transmission electron microscopy</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuFDEMhiMEokvpC3BAkbhwGZo4mSRzXMpCK1UgoSL1FmVTpzvVzCQkO6L79qTd0ko9cLIPn3_bHyHvOPvEGdPHhQMTbcNANEwo2TbdC7Lgbds1nBt4SRbMdKLRSpoD8qaUG8YAONOvyYHQGrgyZkEul_Q7_qHLlHJ0fkNDzHR1m4aY--ma_sSEOcyljxP9nF0_0S9udNdIa3e6S_G29_Ss-A2OtVlNHtPGDTG57Wb3lrwKbih49FAPya-vq4uT0-b8x7ezk-V54wWobeMYBhHQa5AsaNeCNAwQRKcCMu-MlF76tRRGX_E1q2c7B5rrtWqlCQa0OCQf97n1gd8zlq0d--JxGNyEcS4WjFKcAxdtRT88Q2_inKd6nYVOcKMkb0WlYE_5HEvJGGzK_ejyznJm77zbvXdbvdt777arQ-8fouf1iFePI_9EV0DsgZLuzGJ-2v2f2L_qLowm</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zhang, Tianlei</creator><creator>Zhang, Zhiwei</creator><creator>Geng, Jiayi</creator><creator>Lin, Kexin</creator><creator>Lin, Xinru</creator><creator>Jiao, Mengdie</creator><creator>Zhu, Jianghu</creator><creator>Guo, Xiaoling</creator><creator>Lin, Zhenlang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6850-0018</orcidid></search><sort><creationdate>20240301</creationdate><title>A New Approach for Exploring Reperfusion Brain Damage in Hypoxic Ischemic Encephalopathy</title><author>Zhang, Tianlei ; Zhang, Zhiwei ; Geng, Jiayi ; Lin, Kexin ; Lin, Xinru ; Jiao, Mengdie ; Zhu, Jianghu ; Guo, Xiaoling ; Lin, Zhenlang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-a0ef3fec7240f7a524802e2396fe0ca844c4cb4387d1b0772aa2717b6548f8273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood flow</topic><topic>Body weight</topic><topic>Brain damage</topic><topic>Brain injury</topic><topic>Carotid artery</topic><topic>Cell Biology</topic><topic>Cerebral blood flow</topic><topic>Encephalopathy</topic><topic>ESR1 protein</topic><topic>Hypoxia</topic><topic>Ischemia</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Reperfusion</topic><topic>Rice</topic><topic>Spontaneous alternation</topic><topic>Transcriptomics</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tianlei</creatorcontrib><creatorcontrib>Zhang, Zhiwei</creatorcontrib><creatorcontrib>Geng, Jiayi</creatorcontrib><creatorcontrib>Lin, Kexin</creatorcontrib><creatorcontrib>Lin, Xinru</creatorcontrib><creatorcontrib>Jiao, Mengdie</creatorcontrib><creatorcontrib>Zhu, Jianghu</creatorcontrib><creatorcontrib>Guo, Xiaoling</creatorcontrib><creatorcontrib>Lin, Zhenlang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tianlei</au><au>Zhang, Zhiwei</au><au>Geng, Jiayi</au><au>Lin, Kexin</au><au>Lin, Xinru</au><au>Jiao, Mengdie</au><au>Zhu, Jianghu</au><au>Guo, Xiaoling</au><au>Lin, Zhenlang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach for Exploring Reperfusion Brain Damage in Hypoxic Ischemic Encephalopathy</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>61</volume><issue>3</issue><spage>1417</spage><epage>1432</epage><pages>1417-1432</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Reperfusion is an essential pathological stage in hypoxic ischemic encephalopathy (HIE). Although the Rice-Vannucci model is widely used in HIE research, it remains difficult to replicate HIE-related reperfusion brain injury. The purpose of this study is to establish a rat model of hypoxia ischemia reperfusion brain damage (HIRBD) using a common carotid artery (CCA) muscle bridge in order to investigate the mechanisms of cerebral resistance to hypoxic-ischemic and reperfusion brain damage. Random assignment of Sprague–Dawley (SD) rats to the Sham, HIRBD, and Rice-Vannucci groups. Changes in body weight, mortality rate, spontaneous alternation behavior test (SAB test), and dynamic changes in cerebral blood flow (CBF) were detected. The damaged cerebral cortices were extracted for morphological comparison, transcriptomic analysis, and quantitative real-time PCR. Harvesting the hippocampus for transmission electron microscopy (TEM) detection. As a result, CCA muscle bridge could effectively block CBF, which recovered after the muscle bridge detachment. Pathological comparison, the SAB test, and TEM analysis revealed that brain damage in Rice-Vannucci was more severe than HIRBD. Gpx1, S100a6, Cldn5, Esr1, and Gfap were highly expressed in both HIRBD and Rice-Vannucci. In conclusion, the CCA muscle bridge-established HIRBD model could be used as an innovative and dependable model to simulate pathological process of HIRBD. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37721688</pmid><doi>10.1007/s12035-023-03645-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6850-0018</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2024-03, Vol.61 (3), p.1417-1432
issn 0893-7648
1559-1182
language eng
recordid cdi_proquest_miscellaneous_2866112135
source SpringerNature Journals
subjects Biomedical and Life Sciences
Biomedicine
Blood flow
Body weight
Brain damage
Brain injury
Carotid artery
Cell Biology
Cerebral blood flow
Encephalopathy
ESR1 protein
Hypoxia
Ischemia
Neurobiology
Neurology
Neurosciences
Reperfusion
Rice
Spontaneous alternation
Transcriptomics
Transmission electron microscopy
title A New Approach for Exploring Reperfusion Brain Damage in Hypoxic Ischemic Encephalopathy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20for%20Exploring%20Reperfusion%20Brain%20Damage%20in%20Hypoxic%20Ischemic%20Encephalopathy&rft.jtitle=Molecular%20neurobiology&rft.au=Zhang,%20Tianlei&rft.date=2024-03-01&rft.volume=61&rft.issue=3&rft.spage=1417&rft.epage=1432&rft.pages=1417-1432&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-023-03645-9&rft_dat=%3Cproquest_cross%3E2866112135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931864153&rft_id=info:pmid/37721688&rfr_iscdi=true