Texture modeling by multiple pairwise pixel interactions

A Markov random field model with a Gibbs probability distribution (GPD) is proposed for describing particular classes of grayscale images which can be called spatially uniform stochastic textures. The model takes into account only multiple short- and long-range pairwise interactions between the gray...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1996-11, Vol.18 (11), p.1110-1114
1. Verfasser: Gimel'farb, G.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1114
container_issue 11
container_start_page 1110
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 18
creator Gimel'farb, G.L.
description A Markov random field model with a Gibbs probability distribution (GPD) is proposed for describing particular classes of grayscale images which can be called spatially uniform stochastic textures. The model takes into account only multiple short- and long-range pairwise interactions between the gray levels in the pixels. An effective learning scheme is introduced to recover structure and strength of the interactions using maximal likelihood estimates of the potentials in the GPD as desired parameters. The scheme is based on an analytic initial approximation of the estimates and their subsequent refinement by a stochastic approximation. Experiments in modeling natural textures show the utility of the proposed model.
doi_str_mv 10.1109/34.544081
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28657915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>544081</ieee_id><sourcerecordid>26439033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-7e2f0ca4adf5b9299e816e4ef759b57a6c7004a190acf8cf0e0b7afdf2b110123</originalsourceid><addsrcrecordid>eNqF0LtLBDEQBvAgCp6nha3VVoLFnpPXblLK4QsObM46ZHMTiezLZBfv_ntX9rC1moH58cF8hFxTWFEK-p6LlRQCFD0hC6q5zrnk-pQsgBYsV4qpc3KR0icAFRL4gqgt7ocxYtZ0O6xD-5FVh6wZ6yH0NWa9DfE7pGkJe6yz0A4YrRtC16ZLcuZtnfDqOJfk_elxu37JN2_Pr-uHTe44qCEvkXlwVtidl5VmWqOiBQr0pdSVLG3hSgBhqQbrvHIeEKrS-p1n1fQPZXxJbufcPnZfI6bBNCE5rGvbYjcmw1QhS03l_7AQXAPnE7yboYtdShG96WNobDwYCua3RMOFmUuc7M1sAyL-uePxByC-bJ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26439033</pqid></control><display><type>article</type><title>Texture modeling by multiple pairwise pixel interactions</title><source>IEEE Electronic Library (IEL)</source><creator>Gimel'farb, G.L.</creator><creatorcontrib>Gimel'farb, G.L.</creatorcontrib><description>A Markov random field model with a Gibbs probability distribution (GPD) is proposed for describing particular classes of grayscale images which can be called spatially uniform stochastic textures. The model takes into account only multiple short- and long-range pairwise interactions between the gray levels in the pixels. An effective learning scheme is introduced to recover structure and strength of the interactions using maximal likelihood estimates of the potentials in the GPD as desired parameters. The scheme is based on an analytic initial approximation of the estimates and their subsequent refinement by a stochastic approximation. Experiments in modeling natural textures show the utility of the proposed model.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.544081</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Gaussian processes ; Gray-scale ; Image generation ; Lattices ; Markov random fields ; Maximum likelihood estimation ; Parameter estimation ; Physics ; Probability distribution ; Stochastic processes</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1996-11, Vol.18 (11), p.1110-1114</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-7e2f0ca4adf5b9299e816e4ef759b57a6c7004a190acf8cf0e0b7afdf2b110123</citedby><cites>FETCH-LOGICAL-c308t-7e2f0ca4adf5b9299e816e4ef759b57a6c7004a190acf8cf0e0b7afdf2b110123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/544081$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/544081$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gimel'farb, G.L.</creatorcontrib><title>Texture modeling by multiple pairwise pixel interactions</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>A Markov random field model with a Gibbs probability distribution (GPD) is proposed for describing particular classes of grayscale images which can be called spatially uniform stochastic textures. The model takes into account only multiple short- and long-range pairwise interactions between the gray levels in the pixels. An effective learning scheme is introduced to recover structure and strength of the interactions using maximal likelihood estimates of the potentials in the GPD as desired parameters. The scheme is based on an analytic initial approximation of the estimates and their subsequent refinement by a stochastic approximation. Experiments in modeling natural textures show the utility of the proposed model.</description><subject>Gaussian processes</subject><subject>Gray-scale</subject><subject>Image generation</subject><subject>Lattices</subject><subject>Markov random fields</subject><subject>Maximum likelihood estimation</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Probability distribution</subject><subject>Stochastic processes</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqF0LtLBDEQBvAgCp6nha3VVoLFnpPXblLK4QsObM46ZHMTiezLZBfv_ntX9rC1moH58cF8hFxTWFEK-p6LlRQCFD0hC6q5zrnk-pQsgBYsV4qpc3KR0icAFRL4gqgt7ocxYtZ0O6xD-5FVh6wZ6yH0NWa9DfE7pGkJe6yz0A4YrRtC16ZLcuZtnfDqOJfk_elxu37JN2_Pr-uHTe44qCEvkXlwVtidl5VmWqOiBQr0pdSVLG3hSgBhqQbrvHIeEKrS-p1n1fQPZXxJbufcPnZfI6bBNCE5rGvbYjcmw1QhS03l_7AQXAPnE7yboYtdShG96WNobDwYCua3RMOFmUuc7M1sAyL-uePxByC-bJ0</recordid><startdate>19961101</startdate><enddate>19961101</enddate><creator>Gimel'farb, G.L.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19961101</creationdate><title>Texture modeling by multiple pairwise pixel interactions</title><author>Gimel'farb, G.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-7e2f0ca4adf5b9299e816e4ef759b57a6c7004a190acf8cf0e0b7afdf2b110123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Gaussian processes</topic><topic>Gray-scale</topic><topic>Image generation</topic><topic>Lattices</topic><topic>Markov random fields</topic><topic>Maximum likelihood estimation</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Probability distribution</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gimel'farb, G.L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gimel'farb, G.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texture modeling by multiple pairwise pixel interactions</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1996-11-01</date><risdate>1996</risdate><volume>18</volume><issue>11</issue><spage>1110</spage><epage>1114</epage><pages>1110-1114</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>A Markov random field model with a Gibbs probability distribution (GPD) is proposed for describing particular classes of grayscale images which can be called spatially uniform stochastic textures. The model takes into account only multiple short- and long-range pairwise interactions between the gray levels in the pixels. An effective learning scheme is introduced to recover structure and strength of the interactions using maximal likelihood estimates of the potentials in the GPD as desired parameters. The scheme is based on an analytic initial approximation of the estimates and their subsequent refinement by a stochastic approximation. Experiments in modeling natural textures show the utility of the proposed model.</abstract><pub>IEEE</pub><doi>10.1109/34.544081</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1996-11, Vol.18 (11), p.1110-1114
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_28657915
source IEEE Electronic Library (IEL)
subjects Gaussian processes
Gray-scale
Image generation
Lattices
Markov random fields
Maximum likelihood estimation
Parameter estimation
Physics
Probability distribution
Stochastic processes
title Texture modeling by multiple pairwise pixel interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texture%20modeling%20by%20multiple%20pairwise%20pixel%20interactions&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Gimel'farb,%20G.L.&rft.date=1996-11-01&rft.volume=18&rft.issue=11&rft.spage=1110&rft.epage=1114&rft.pages=1110-1114&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.544081&rft_dat=%3Cproquest_RIE%3E26439033%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26439033&rft_id=info:pmid/&rft_ieee_id=544081&rfr_iscdi=true