SCN-MLTPP: A Multi-Label Classifier for Predicting Therapeutic Properties of Peptides Using the Stacked Capsule Network
Identifying the function of therapeutic peptides is an important issue in the development of novel drugs. To reduce the time and labor costs required to identify therapeutic peptides, computational methods are increasingly required. However, most of the existing peptide therapeutic function predicti...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2023-11, Vol.20 (6), p.3715-3724 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3724 |
---|---|
container_issue | 6 |
container_start_page | 3715 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 20 |
creator | Zhao, Haochen Du, Ruihong Zhou, Ruikang Li, Suning Duan, Guihua Wang, Jianxin |
description | Identifying the function of therapeutic peptides is an important issue in the development of novel drugs. To reduce the time and labor costs required to identify therapeutic peptides, computational methods are increasingly required. However, most of the existing peptide therapeutic function prediction models are used for predicting a single therapeutic function, ignoring the fact that a bioactive peptide might simultaneously consist of multi-activities. Furthermore, in the few existing multi-label classification models, the feature extraction procedures are still rough. We propose a multi-label framework, called SCN-MLTPP, with a stacked capsule network for predicting the therapeutic properties of peptides. Instead of using peptide sequence vectors alone, SCN-MLTPP extracts different view representation vectors from the therapeutic peptides and learns the contributions of different views to the properties of therapeutic peptides based on the dynamic routing mechanism. Benchmarking results show that as compared with existing multi-label predictors, SCN-MLTPP achieves better and more robust performance for different peptides. In addition, some visual analyses and case studies also demonstrate the model can reliably capture features from multi-view data and predict different peptides. |
doi_str_mv | 10.1109/TCBB.2023.3315330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2865786044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10251654</ieee_id><sourcerecordid>2865786044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-d79442385c23fe31ea0f7917d620dbbce2b71fce806ef22249864c7dea1b0e983</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpadK0P6BQiqCXXLzVt6zeEpN-wCZdyOYsZHnUKPGuXUkm9N_XZrel9DTD8MzLDA9CbylZUUrMx21zeblihPEV51RyTp6hUyqlroxR4vnSC1lJo_gJepXzAyFMGCJeohOuNakJI6fo6ba5qa7X283mE77A11NfYrV2LfS46V3OMURIOAwJbxJ00Ze4_4G395DcCFOJfh4PI6QSIeMh4A2MJXZzf5cXsNwDvi3OP0KHGzfmqQd8A-VpSI-v0Yvg-gxvjvUM3X2-2jZfq_X3L9-ai3XlOWGl6rQRgvFaesYDcAqOBG2o7hQjXdt6YK2mwUNNFATG5v9qJbzuwNGWgKn5GTo_5I5p-DlBLnYXs4e-d3sYpmxZraSuFRFiRj_8hz4MU9rP11lmiJKG1YzOFD1QPg05Jwh2THHn0i9LiV2s2MWKXazYo5V55_0xeWp30P3d-KNhBt4dgAgA_wQySZUU_DePi4_Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906592821</pqid></control><display><type>article</type><title>SCN-MLTPP: A Multi-Label Classifier for Predicting Therapeutic Properties of Peptides Using the Stacked Capsule Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Haochen ; Du, Ruihong ; Zhou, Ruikang ; Li, Suning ; Duan, Guihua ; Wang, Jianxin</creator><creatorcontrib>Zhao, Haochen ; Du, Ruihong ; Zhou, Ruikang ; Li, Suning ; Duan, Guihua ; Wang, Jianxin</creatorcontrib><description>Identifying the function of therapeutic peptides is an important issue in the development of novel drugs. To reduce the time and labor costs required to identify therapeutic peptides, computational methods are increasingly required. However, most of the existing peptide therapeutic function prediction models are used for predicting a single therapeutic function, ignoring the fact that a bioactive peptide might simultaneously consist of multi-activities. Furthermore, in the few existing multi-label classification models, the feature extraction procedures are still rough. We propose a multi-label framework, called SCN-MLTPP, with a stacked capsule network for predicting the therapeutic properties of peptides. Instead of using peptide sequence vectors alone, SCN-MLTPP extracts different view representation vectors from the therapeutic peptides and learns the contributions of different views to the properties of therapeutic peptides based on the dynamic routing mechanism. Benchmarking results show that as compared with existing multi-label predictors, SCN-MLTPP achieves better and more robust performance for different peptides. In addition, some visual analyses and case studies also demonstrate the model can reliably capture features from multi-view data and predict different peptides.</description><identifier>ISSN: 1545-5963</identifier><identifier>ISSN: 1557-9964</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2023.3315330</identifier><identifier>PMID: 37708020</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Amino acids ; Benchmarking ; Biological system modeling ; Computational modeling ; Convolutional neural networks ; Deep learning ; Drug development ; Extraction procedures ; Feature extraction ; Labels ; multi-label problem ; peptide therapeutic properties ; Peptides ; Peptides - pharmacology ; Prediction models ; Predictions ; Predictive models</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2023-11, Vol.20 (6), p.3715-3724</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-d79442385c23fe31ea0f7917d620dbbce2b71fce806ef22249864c7dea1b0e983</cites><orcidid>0009-0000-9363-9134 ; 0000-0002-9406-6443 ; 0000-0003-1516-0480 ; 0009-0006-9339-0256 ; 0009-0005-0573-5756 ; 0000-0001-8794-3148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10251654$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10251654$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37708020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Haochen</creatorcontrib><creatorcontrib>Du, Ruihong</creatorcontrib><creatorcontrib>Zhou, Ruikang</creatorcontrib><creatorcontrib>Li, Suning</creatorcontrib><creatorcontrib>Duan, Guihua</creatorcontrib><creatorcontrib>Wang, Jianxin</creatorcontrib><title>SCN-MLTPP: A Multi-Label Classifier for Predicting Therapeutic Properties of Peptides Using the Stacked Capsule Network</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Identifying the function of therapeutic peptides is an important issue in the development of novel drugs. To reduce the time and labor costs required to identify therapeutic peptides, computational methods are increasingly required. However, most of the existing peptide therapeutic function prediction models are used for predicting a single therapeutic function, ignoring the fact that a bioactive peptide might simultaneously consist of multi-activities. Furthermore, in the few existing multi-label classification models, the feature extraction procedures are still rough. We propose a multi-label framework, called SCN-MLTPP, with a stacked capsule network for predicting the therapeutic properties of peptides. Instead of using peptide sequence vectors alone, SCN-MLTPP extracts different view representation vectors from the therapeutic peptides and learns the contributions of different views to the properties of therapeutic peptides based on the dynamic routing mechanism. Benchmarking results show that as compared with existing multi-label predictors, SCN-MLTPP achieves better and more robust performance for different peptides. In addition, some visual analyses and case studies also demonstrate the model can reliably capture features from multi-view data and predict different peptides.</description><subject>Amino acids</subject><subject>Benchmarking</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Drug development</subject><subject>Extraction procedures</subject><subject>Feature extraction</subject><subject>Labels</subject><subject>multi-label problem</subject><subject>peptide therapeutic properties</subject><subject>Peptides</subject><subject>Peptides - pharmacology</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Predictive models</subject><issn>1545-5963</issn><issn>1557-9964</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1r3DAQhkVpadK0P6BQiqCXXLzVt6zeEpN-wCZdyOYsZHnUKPGuXUkm9N_XZrel9DTD8MzLDA9CbylZUUrMx21zeblihPEV51RyTp6hUyqlroxR4vnSC1lJo_gJepXzAyFMGCJeohOuNakJI6fo6ba5qa7X283mE77A11NfYrV2LfS46V3OMURIOAwJbxJ00Ze4_4G395DcCFOJfh4PI6QSIeMh4A2MJXZzf5cXsNwDvi3OP0KHGzfmqQd8A-VpSI-v0Yvg-gxvjvUM3X2-2jZfq_X3L9-ai3XlOWGl6rQRgvFaesYDcAqOBG2o7hQjXdt6YK2mwUNNFATG5v9qJbzuwNGWgKn5GTo_5I5p-DlBLnYXs4e-d3sYpmxZraSuFRFiRj_8hz4MU9rP11lmiJKG1YzOFD1QPg05Jwh2THHn0i9LiV2s2MWKXazYo5V55_0xeWp30P3d-KNhBt4dgAgA_wQySZUU_DePi4_Z</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhao, Haochen</creator><creator>Du, Ruihong</creator><creator>Zhou, Ruikang</creator><creator>Li, Suning</creator><creator>Duan, Guihua</creator><creator>Wang, Jianxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-9363-9134</orcidid><orcidid>https://orcid.org/0000-0002-9406-6443</orcidid><orcidid>https://orcid.org/0000-0003-1516-0480</orcidid><orcidid>https://orcid.org/0009-0006-9339-0256</orcidid><orcidid>https://orcid.org/0009-0005-0573-5756</orcidid><orcidid>https://orcid.org/0000-0001-8794-3148</orcidid></search><sort><creationdate>20231101</creationdate><title>SCN-MLTPP: A Multi-Label Classifier for Predicting Therapeutic Properties of Peptides Using the Stacked Capsule Network</title><author>Zhao, Haochen ; Du, Ruihong ; Zhou, Ruikang ; Li, Suning ; Duan, Guihua ; Wang, Jianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-d79442385c23fe31ea0f7917d620dbbce2b71fce806ef22249864c7dea1b0e983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino acids</topic><topic>Benchmarking</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Drug development</topic><topic>Extraction procedures</topic><topic>Feature extraction</topic><topic>Labels</topic><topic>multi-label problem</topic><topic>peptide therapeutic properties</topic><topic>Peptides</topic><topic>Peptides - pharmacology</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Predictive models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Haochen</creatorcontrib><creatorcontrib>Du, Ruihong</creatorcontrib><creatorcontrib>Zhou, Ruikang</creatorcontrib><creatorcontrib>Li, Suning</creatorcontrib><creatorcontrib>Duan, Guihua</creatorcontrib><creatorcontrib>Wang, Jianxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Haochen</au><au>Du, Ruihong</au><au>Zhou, Ruikang</au><au>Li, Suning</au><au>Duan, Guihua</au><au>Wang, Jianxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SCN-MLTPP: A Multi-Label Classifier for Predicting Therapeutic Properties of Peptides Using the Stacked Capsule Network</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>20</volume><issue>6</issue><spage>3715</spage><epage>3724</epage><pages>3715-3724</pages><issn>1545-5963</issn><issn>1557-9964</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Identifying the function of therapeutic peptides is an important issue in the development of novel drugs. To reduce the time and labor costs required to identify therapeutic peptides, computational methods are increasingly required. However, most of the existing peptide therapeutic function prediction models are used for predicting a single therapeutic function, ignoring the fact that a bioactive peptide might simultaneously consist of multi-activities. Furthermore, in the few existing multi-label classification models, the feature extraction procedures are still rough. We propose a multi-label framework, called SCN-MLTPP, with a stacked capsule network for predicting the therapeutic properties of peptides. Instead of using peptide sequence vectors alone, SCN-MLTPP extracts different view representation vectors from the therapeutic peptides and learns the contributions of different views to the properties of therapeutic peptides based on the dynamic routing mechanism. Benchmarking results show that as compared with existing multi-label predictors, SCN-MLTPP achieves better and more robust performance for different peptides. In addition, some visual analyses and case studies also demonstrate the model can reliably capture features from multi-view data and predict different peptides.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37708020</pmid><doi>10.1109/TCBB.2023.3315330</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0000-9363-9134</orcidid><orcidid>https://orcid.org/0000-0002-9406-6443</orcidid><orcidid>https://orcid.org/0000-0003-1516-0480</orcidid><orcidid>https://orcid.org/0009-0006-9339-0256</orcidid><orcidid>https://orcid.org/0009-0005-0573-5756</orcidid><orcidid>https://orcid.org/0000-0001-8794-3148</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2023-11, Vol.20 (6), p.3715-3724 |
issn | 1545-5963 1557-9964 1557-9964 |
language | eng |
recordid | cdi_proquest_miscellaneous_2865786044 |
source | IEEE Electronic Library (IEL) |
subjects | Amino acids Benchmarking Biological system modeling Computational modeling Convolutional neural networks Deep learning Drug development Extraction procedures Feature extraction Labels multi-label problem peptide therapeutic properties Peptides Peptides - pharmacology Prediction models Predictions Predictive models |
title | SCN-MLTPP: A Multi-Label Classifier for Predicting Therapeutic Properties of Peptides Using the Stacked Capsule Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SCN-MLTPP:%20A%20Multi-Label%20Classifier%20for%20Predicting%20Therapeutic%20Properties%20of%20Peptides%20Using%20the%20Stacked%20Capsule%20Network&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Zhao,%20Haochen&rft.date=2023-11-01&rft.volume=20&rft.issue=6&rft.spage=3715&rft.epage=3724&rft.pages=3715-3724&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2023.3315330&rft_dat=%3Cproquest_RIE%3E2865786044%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906592821&rft_id=info:pmid/37708020&rft_ieee_id=10251654&rfr_iscdi=true |