SCN-MLTPP: A Multi-Label Classifier for Predicting Therapeutic Properties of Peptides Using the Stacked Capsule Network

Identifying the function of therapeutic peptides is an important issue in the development of novel drugs. To reduce the time and labor costs required to identify therapeutic peptides, computational methods are increasingly required. However, most of the existing peptide therapeutic function predicti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2023-11, Vol.20 (6), p.3715-3724
Hauptverfasser: Zhao, Haochen, Du, Ruihong, Zhou, Ruikang, Li, Suning, Duan, Guihua, Wang, Jianxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3724
container_issue 6
container_start_page 3715
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 20
creator Zhao, Haochen
Du, Ruihong
Zhou, Ruikang
Li, Suning
Duan, Guihua
Wang, Jianxin
description Identifying the function of therapeutic peptides is an important issue in the development of novel drugs. To reduce the time and labor costs required to identify therapeutic peptides, computational methods are increasingly required. However, most of the existing peptide therapeutic function prediction models are used for predicting a single therapeutic function, ignoring the fact that a bioactive peptide might simultaneously consist of multi-activities. Furthermore, in the few existing multi-label classification models, the feature extraction procedures are still rough. We propose a multi-label framework, called SCN-MLTPP, with a stacked capsule network for predicting the therapeutic properties of peptides. Instead of using peptide sequence vectors alone, SCN-MLTPP extracts different view representation vectors from the therapeutic peptides and learns the contributions of different views to the properties of therapeutic peptides based on the dynamic routing mechanism. Benchmarking results show that as compared with existing multi-label predictors, SCN-MLTPP achieves better and more robust performance for different peptides. In addition, some visual analyses and case studies also demonstrate the model can reliably capture features from multi-view data and predict different peptides.
doi_str_mv 10.1109/TCBB.2023.3315330
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2865786044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10251654</ieee_id><sourcerecordid>2865786044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-d79442385c23fe31ea0f7917d620dbbce2b71fce806ef22249864c7dea1b0e983</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpadK0P6BQiqCXXLzVt6zeEpN-wCZdyOYsZHnUKPGuXUkm9N_XZrel9DTD8MzLDA9CbylZUUrMx21zeblihPEV51RyTp6hUyqlroxR4vnSC1lJo_gJepXzAyFMGCJeohOuNakJI6fo6ba5qa7X283mE77A11NfYrV2LfS46V3OMURIOAwJbxJ00Ze4_4G395DcCFOJfh4PI6QSIeMh4A2MJXZzf5cXsNwDvi3OP0KHGzfmqQd8A-VpSI-v0Yvg-gxvjvUM3X2-2jZfq_X3L9-ai3XlOWGl6rQRgvFaesYDcAqOBG2o7hQjXdt6YK2mwUNNFATG5v9qJbzuwNGWgKn5GTo_5I5p-DlBLnYXs4e-d3sYpmxZraSuFRFiRj_8hz4MU9rP11lmiJKG1YzOFD1QPg05Jwh2THHn0i9LiV2s2MWKXazYo5V55_0xeWp30P3d-KNhBt4dgAgA_wQySZUU_DePi4_Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906592821</pqid></control><display><type>article</type><title>SCN-MLTPP: A Multi-Label Classifier for Predicting Therapeutic Properties of Peptides Using the Stacked Capsule Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Haochen ; Du, Ruihong ; Zhou, Ruikang ; Li, Suning ; Duan, Guihua ; Wang, Jianxin</creator><creatorcontrib>Zhao, Haochen ; Du, Ruihong ; Zhou, Ruikang ; Li, Suning ; Duan, Guihua ; Wang, Jianxin</creatorcontrib><description>Identifying the function of therapeutic peptides is an important issue in the development of novel drugs. To reduce the time and labor costs required to identify therapeutic peptides, computational methods are increasingly required. However, most of the existing peptide therapeutic function prediction models are used for predicting a single therapeutic function, ignoring the fact that a bioactive peptide might simultaneously consist of multi-activities. Furthermore, in the few existing multi-label classification models, the feature extraction procedures are still rough. We propose a multi-label framework, called SCN-MLTPP, with a stacked capsule network for predicting the therapeutic properties of peptides. Instead of using peptide sequence vectors alone, SCN-MLTPP extracts different view representation vectors from the therapeutic peptides and learns the contributions of different views to the properties of therapeutic peptides based on the dynamic routing mechanism. Benchmarking results show that as compared with existing multi-label predictors, SCN-MLTPP achieves better and more robust performance for different peptides. In addition, some visual analyses and case studies also demonstrate the model can reliably capture features from multi-view data and predict different peptides.</description><identifier>ISSN: 1545-5963</identifier><identifier>ISSN: 1557-9964</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2023.3315330</identifier><identifier>PMID: 37708020</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Amino acids ; Benchmarking ; Biological system modeling ; Computational modeling ; Convolutional neural networks ; Deep learning ; Drug development ; Extraction procedures ; Feature extraction ; Labels ; multi-label problem ; peptide therapeutic properties ; Peptides ; Peptides - pharmacology ; Prediction models ; Predictions ; Predictive models</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2023-11, Vol.20 (6), p.3715-3724</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-d79442385c23fe31ea0f7917d620dbbce2b71fce806ef22249864c7dea1b0e983</cites><orcidid>0009-0000-9363-9134 ; 0000-0002-9406-6443 ; 0000-0003-1516-0480 ; 0009-0006-9339-0256 ; 0009-0005-0573-5756 ; 0000-0001-8794-3148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10251654$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10251654$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37708020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Haochen</creatorcontrib><creatorcontrib>Du, Ruihong</creatorcontrib><creatorcontrib>Zhou, Ruikang</creatorcontrib><creatorcontrib>Li, Suning</creatorcontrib><creatorcontrib>Duan, Guihua</creatorcontrib><creatorcontrib>Wang, Jianxin</creatorcontrib><title>SCN-MLTPP: A Multi-Label Classifier for Predicting Therapeutic Properties of Peptides Using the Stacked Capsule Network</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Identifying the function of therapeutic peptides is an important issue in the development of novel drugs. To reduce the time and labor costs required to identify therapeutic peptides, computational methods are increasingly required. However, most of the existing peptide therapeutic function prediction models are used for predicting a single therapeutic function, ignoring the fact that a bioactive peptide might simultaneously consist of multi-activities. Furthermore, in the few existing multi-label classification models, the feature extraction procedures are still rough. We propose a multi-label framework, called SCN-MLTPP, with a stacked capsule network for predicting the therapeutic properties of peptides. Instead of using peptide sequence vectors alone, SCN-MLTPP extracts different view representation vectors from the therapeutic peptides and learns the contributions of different views to the properties of therapeutic peptides based on the dynamic routing mechanism. Benchmarking results show that as compared with existing multi-label predictors, SCN-MLTPP achieves better and more robust performance for different peptides. In addition, some visual analyses and case studies also demonstrate the model can reliably capture features from multi-view data and predict different peptides.</description><subject>Amino acids</subject><subject>Benchmarking</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Drug development</subject><subject>Extraction procedures</subject><subject>Feature extraction</subject><subject>Labels</subject><subject>multi-label problem</subject><subject>peptide therapeutic properties</subject><subject>Peptides</subject><subject>Peptides - pharmacology</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Predictive models</subject><issn>1545-5963</issn><issn>1557-9964</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1r3DAQhkVpadK0P6BQiqCXXLzVt6zeEpN-wCZdyOYsZHnUKPGuXUkm9N_XZrel9DTD8MzLDA9CbylZUUrMx21zeblihPEV51RyTp6hUyqlroxR4vnSC1lJo_gJepXzAyFMGCJeohOuNakJI6fo6ba5qa7X283mE77A11NfYrV2LfS46V3OMURIOAwJbxJ00Ze4_4G395DcCFOJfh4PI6QSIeMh4A2MJXZzf5cXsNwDvi3OP0KHGzfmqQd8A-VpSI-v0Yvg-gxvjvUM3X2-2jZfq_X3L9-ai3XlOWGl6rQRgvFaesYDcAqOBG2o7hQjXdt6YK2mwUNNFATG5v9qJbzuwNGWgKn5GTo_5I5p-DlBLnYXs4e-d3sYpmxZraSuFRFiRj_8hz4MU9rP11lmiJKG1YzOFD1QPg05Jwh2THHn0i9LiV2s2MWKXazYo5V55_0xeWp30P3d-KNhBt4dgAgA_wQySZUU_DePi4_Z</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhao, Haochen</creator><creator>Du, Ruihong</creator><creator>Zhou, Ruikang</creator><creator>Li, Suning</creator><creator>Duan, Guihua</creator><creator>Wang, Jianxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-9363-9134</orcidid><orcidid>https://orcid.org/0000-0002-9406-6443</orcidid><orcidid>https://orcid.org/0000-0003-1516-0480</orcidid><orcidid>https://orcid.org/0009-0006-9339-0256</orcidid><orcidid>https://orcid.org/0009-0005-0573-5756</orcidid><orcidid>https://orcid.org/0000-0001-8794-3148</orcidid></search><sort><creationdate>20231101</creationdate><title>SCN-MLTPP: A Multi-Label Classifier for Predicting Therapeutic Properties of Peptides Using the Stacked Capsule Network</title><author>Zhao, Haochen ; Du, Ruihong ; Zhou, Ruikang ; Li, Suning ; Duan, Guihua ; Wang, Jianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-d79442385c23fe31ea0f7917d620dbbce2b71fce806ef22249864c7dea1b0e983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino acids</topic><topic>Benchmarking</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Drug development</topic><topic>Extraction procedures</topic><topic>Feature extraction</topic><topic>Labels</topic><topic>multi-label problem</topic><topic>peptide therapeutic properties</topic><topic>Peptides</topic><topic>Peptides - pharmacology</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Predictive models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Haochen</creatorcontrib><creatorcontrib>Du, Ruihong</creatorcontrib><creatorcontrib>Zhou, Ruikang</creatorcontrib><creatorcontrib>Li, Suning</creatorcontrib><creatorcontrib>Duan, Guihua</creatorcontrib><creatorcontrib>Wang, Jianxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Haochen</au><au>Du, Ruihong</au><au>Zhou, Ruikang</au><au>Li, Suning</au><au>Duan, Guihua</au><au>Wang, Jianxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SCN-MLTPP: A Multi-Label Classifier for Predicting Therapeutic Properties of Peptides Using the Stacked Capsule Network</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>20</volume><issue>6</issue><spage>3715</spage><epage>3724</epage><pages>3715-3724</pages><issn>1545-5963</issn><issn>1557-9964</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Identifying the function of therapeutic peptides is an important issue in the development of novel drugs. To reduce the time and labor costs required to identify therapeutic peptides, computational methods are increasingly required. However, most of the existing peptide therapeutic function prediction models are used for predicting a single therapeutic function, ignoring the fact that a bioactive peptide might simultaneously consist of multi-activities. Furthermore, in the few existing multi-label classification models, the feature extraction procedures are still rough. We propose a multi-label framework, called SCN-MLTPP, with a stacked capsule network for predicting the therapeutic properties of peptides. Instead of using peptide sequence vectors alone, SCN-MLTPP extracts different view representation vectors from the therapeutic peptides and learns the contributions of different views to the properties of therapeutic peptides based on the dynamic routing mechanism. Benchmarking results show that as compared with existing multi-label predictors, SCN-MLTPP achieves better and more robust performance for different peptides. In addition, some visual analyses and case studies also demonstrate the model can reliably capture features from multi-view data and predict different peptides.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37708020</pmid><doi>10.1109/TCBB.2023.3315330</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0000-9363-9134</orcidid><orcidid>https://orcid.org/0000-0002-9406-6443</orcidid><orcidid>https://orcid.org/0000-0003-1516-0480</orcidid><orcidid>https://orcid.org/0009-0006-9339-0256</orcidid><orcidid>https://orcid.org/0009-0005-0573-5756</orcidid><orcidid>https://orcid.org/0000-0001-8794-3148</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2023-11, Vol.20 (6), p.3715-3724
issn 1545-5963
1557-9964
1557-9964
language eng
recordid cdi_proquest_miscellaneous_2865786044
source IEEE Electronic Library (IEL)
subjects Amino acids
Benchmarking
Biological system modeling
Computational modeling
Convolutional neural networks
Deep learning
Drug development
Extraction procedures
Feature extraction
Labels
multi-label problem
peptide therapeutic properties
Peptides
Peptides - pharmacology
Prediction models
Predictions
Predictive models
title SCN-MLTPP: A Multi-Label Classifier for Predicting Therapeutic Properties of Peptides Using the Stacked Capsule Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SCN-MLTPP:%20A%20Multi-Label%20Classifier%20for%20Predicting%20Therapeutic%20Properties%20of%20Peptides%20Using%20the%20Stacked%20Capsule%20Network&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Zhao,%20Haochen&rft.date=2023-11-01&rft.volume=20&rft.issue=6&rft.spage=3715&rft.epage=3724&rft.pages=3715-3724&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2023.3315330&rft_dat=%3Cproquest_RIE%3E2865786044%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906592821&rft_id=info:pmid/37708020&rft_ieee_id=10251654&rfr_iscdi=true