Heterogeneous treatment effects of coronary artery bypass grafting in ischemic cardiomyopathy: A machine learning causal forest analysis

We aim to evaluate the heterogeneous treatment effects of coronary artery bypass grafting in patients with ischemic cardiomyopathy and to identify a group of patients to have greater benefits from coronary artery bypass grafting compared with medical therapy alone. Machine learning causal forest mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of thoracic and cardiovascular surgery 2024-11, Vol.168 (5), p.1462-1471.e7
Hauptverfasser: Zhou, Zhuoming, Jian, Bohao, Chen, Xuanyu, Liu, Menghui, Zhang, Shaozhao, Fu, Guangguo, Li, Gang, Liang, Mengya, Tian, Ting, Wu, Zhongkai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1471.e7
container_issue 5
container_start_page 1462
container_title The Journal of thoracic and cardiovascular surgery
container_volume 168
creator Zhou, Zhuoming
Jian, Bohao
Chen, Xuanyu
Liu, Menghui
Zhang, Shaozhao
Fu, Guangguo
Li, Gang
Liang, Mengya
Tian, Ting
Wu, Zhongkai
description We aim to evaluate the heterogeneous treatment effects of coronary artery bypass grafting in patients with ischemic cardiomyopathy and to identify a group of patients to have greater benefits from coronary artery bypass grafting compared with medical therapy alone. Machine learning causal forest modeling was performed to identify the heterogeneous treatment effects of coronary artery bypass grafting in patients with ischemic cardiomyopathy from the Surgical Treatment for Ischemic Heart Failure trial. The risks of death from any cause and death from cardiovascular causes between coronary artery bypass grafting and medical therapy alone were assessed in the identified subgroups. Among 1212 patients enrolled in the Surgical Treatment for Ischemic Heart Failure trial, left ventricular end-systolic volume index, serum creatinine, and age were identified by the machine learning algorithm to distinguish patients with heterogeneous treatment effects. Among patients with left ventricular end-systolic volume index greater than 84 mL/m2 and age 60.27 years or less, coronary artery bypass grafting was associated with a significantly lower risk of death from any cause (adjusted hazard ratio, 0.61; 95% CI, 0.45-0.84) and death from cardiovascular causes (adjusted hazard ratio, 0.63; 95% CI, 0.45-0.89). By contrast, the survival benefits of coronary artery bypass grafting no longer exist in patients with left ventricular end-systolic volume index 84 mL/m2 or less and serum creatinine 1.04 mg/dL or less, or patients with left ventricular end-systolic volume index greater than 84 mL/m2 and age more than 60.27 years. The current post hoc analysis of the Surgical Treatment for Ischemic Heart Failure trial identified heterogeneous treatment effects of coronary artery bypass grafting in patients with ischemic cardiomyopathy. Younger patients with severe left ventricular enlargement were more likely to derive greater survival benefits from coronary artery bypass grafting. [Display omitted]
doi_str_mv 10.1016/j.jtcvs.2023.09.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2865783267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022522323007973</els_id><sourcerecordid>2865783267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-c81e36df9bc608ec16e9b28cd8924f10d67f99f0a58b76433666e47ad14603313</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpaLZpf0Gh6NiL3ZG0lq1CDyG0TSCQSwK9CVke7Wqxra2kDfgf9GdHm0167Gku38x78x4hnxjUDJj8uqt32T6mmgMXNagaOHtDVgxUW8mu-f2WrAA4rxrOxTl5n9IOAFpg6h05F23LpGz4ivy9xowxbHDGcEg0RzR5wjlTdA5tTjQ4akMMs4kLNbGwC-2XvUmJbqJx2c8b6mfqk93i5C21Jg4-TEvYm7xdvtFLOhm79TPSEU2cj7g1h2RG6kLElKmZzbgknz6QM2fGhB9f5gV5-Pnj_uq6ur37dXN1eVtZASpXtmMo5OBUbyV0aJlE1fPODp3ia8dgkK1TyoFpur6VayGklLhuzcDWEoRg4oJ8Od3dx_DnUBzoqZjHcTTPCWjeyabtBJdtQcUJtTGkFNHpffRTCUIz0McK9E4_V6CPFWhQulRQtj6_CBz6CYd_O6-ZF-D7CcDy5qPHqJP1OFscfCyR6yH4_wo8Ae8SnAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865783267</pqid></control><display><type>article</type><title>Heterogeneous treatment effects of coronary artery bypass grafting in ischemic cardiomyopathy: A machine learning causal forest analysis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zhou, Zhuoming ; Jian, Bohao ; Chen, Xuanyu ; Liu, Menghui ; Zhang, Shaozhao ; Fu, Guangguo ; Li, Gang ; Liang, Mengya ; Tian, Ting ; Wu, Zhongkai</creator><creatorcontrib>Zhou, Zhuoming ; Jian, Bohao ; Chen, Xuanyu ; Liu, Menghui ; Zhang, Shaozhao ; Fu, Guangguo ; Li, Gang ; Liang, Mengya ; Tian, Ting ; Wu, Zhongkai</creatorcontrib><description>We aim to evaluate the heterogeneous treatment effects of coronary artery bypass grafting in patients with ischemic cardiomyopathy and to identify a group of patients to have greater benefits from coronary artery bypass grafting compared with medical therapy alone. Machine learning causal forest modeling was performed to identify the heterogeneous treatment effects of coronary artery bypass grafting in patients with ischemic cardiomyopathy from the Surgical Treatment for Ischemic Heart Failure trial. The risks of death from any cause and death from cardiovascular causes between coronary artery bypass grafting and medical therapy alone were assessed in the identified subgroups. Among 1212 patients enrolled in the Surgical Treatment for Ischemic Heart Failure trial, left ventricular end-systolic volume index, serum creatinine, and age were identified by the machine learning algorithm to distinguish patients with heterogeneous treatment effects. Among patients with left ventricular end-systolic volume index greater than 84 mL/m2 and age 60.27 years or less, coronary artery bypass grafting was associated with a significantly lower risk of death from any cause (adjusted hazard ratio, 0.61; 95% CI, 0.45-0.84) and death from cardiovascular causes (adjusted hazard ratio, 0.63; 95% CI, 0.45-0.89). By contrast, the survival benefits of coronary artery bypass grafting no longer exist in patients with left ventricular end-systolic volume index 84 mL/m2 or less and serum creatinine 1.04 mg/dL or less, or patients with left ventricular end-systolic volume index greater than 84 mL/m2 and age more than 60.27 years. The current post hoc analysis of the Surgical Treatment for Ischemic Heart Failure trial identified heterogeneous treatment effects of coronary artery bypass grafting in patients with ischemic cardiomyopathy. Younger patients with severe left ventricular enlargement were more likely to derive greater survival benefits from coronary artery bypass grafting. [Display omitted]</description><identifier>ISSN: 0022-5223</identifier><identifier>ISSN: 1097-685X</identifier><identifier>EISSN: 1097-685X</identifier><identifier>DOI: 10.1016/j.jtcvs.2023.09.021</identifier><identifier>PMID: 37716652</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age Factors ; Aged ; Cardiomyopathies - etiology ; Cardiomyopathies - mortality ; Cardiomyopathies - physiopathology ; Cardiomyopathies - surgery ; causal forest ; Coronary Artery Bypass - adverse effects ; Coronary Artery Bypass - methods ; Coronary Artery Bypass - mortality ; coronary artery bypass surgery ; Female ; heterogeneous treatment effect ; Humans ; ischemic heart failure ; Machine Learning ; Male ; Middle Aged ; Myocardial Ischemia - complications ; Myocardial Ischemia - diagnostic imaging ; Myocardial Ischemia - mortality ; Myocardial Ischemia - surgery ; Risk Assessment ; Risk Factors ; STICH ; Stroke Volume ; Treatment Effect Heterogeneity ; Treatment Outcome ; Ventricular Function, Left</subject><ispartof>The Journal of thoracic and cardiovascular surgery, 2024-11, Vol.168 (5), p.1462-1471.e7</ispartof><rights>2023 The American Association for Thoracic Surgery</rights><rights>Copyright © 2023 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-c81e36df9bc608ec16e9b28cd8924f10d67f99f0a58b76433666e47ad14603313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022522323007973$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37716652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Zhuoming</creatorcontrib><creatorcontrib>Jian, Bohao</creatorcontrib><creatorcontrib>Chen, Xuanyu</creatorcontrib><creatorcontrib>Liu, Menghui</creatorcontrib><creatorcontrib>Zhang, Shaozhao</creatorcontrib><creatorcontrib>Fu, Guangguo</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Liang, Mengya</creatorcontrib><creatorcontrib>Tian, Ting</creatorcontrib><creatorcontrib>Wu, Zhongkai</creatorcontrib><title>Heterogeneous treatment effects of coronary artery bypass grafting in ischemic cardiomyopathy: A machine learning causal forest analysis</title><title>The Journal of thoracic and cardiovascular surgery</title><addtitle>J Thorac Cardiovasc Surg</addtitle><description>We aim to evaluate the heterogeneous treatment effects of coronary artery bypass grafting in patients with ischemic cardiomyopathy and to identify a group of patients to have greater benefits from coronary artery bypass grafting compared with medical therapy alone. Machine learning causal forest modeling was performed to identify the heterogeneous treatment effects of coronary artery bypass grafting in patients with ischemic cardiomyopathy from the Surgical Treatment for Ischemic Heart Failure trial. The risks of death from any cause and death from cardiovascular causes between coronary artery bypass grafting and medical therapy alone were assessed in the identified subgroups. Among 1212 patients enrolled in the Surgical Treatment for Ischemic Heart Failure trial, left ventricular end-systolic volume index, serum creatinine, and age were identified by the machine learning algorithm to distinguish patients with heterogeneous treatment effects. Among patients with left ventricular end-systolic volume index greater than 84 mL/m2 and age 60.27 years or less, coronary artery bypass grafting was associated with a significantly lower risk of death from any cause (adjusted hazard ratio, 0.61; 95% CI, 0.45-0.84) and death from cardiovascular causes (adjusted hazard ratio, 0.63; 95% CI, 0.45-0.89). By contrast, the survival benefits of coronary artery bypass grafting no longer exist in patients with left ventricular end-systolic volume index 84 mL/m2 or less and serum creatinine 1.04 mg/dL or less, or patients with left ventricular end-systolic volume index greater than 84 mL/m2 and age more than 60.27 years. The current post hoc analysis of the Surgical Treatment for Ischemic Heart Failure trial identified heterogeneous treatment effects of coronary artery bypass grafting in patients with ischemic cardiomyopathy. Younger patients with severe left ventricular enlargement were more likely to derive greater survival benefits from coronary artery bypass grafting. [Display omitted]</description><subject>Age Factors</subject><subject>Aged</subject><subject>Cardiomyopathies - etiology</subject><subject>Cardiomyopathies - mortality</subject><subject>Cardiomyopathies - physiopathology</subject><subject>Cardiomyopathies - surgery</subject><subject>causal forest</subject><subject>Coronary Artery Bypass - adverse effects</subject><subject>Coronary Artery Bypass - methods</subject><subject>Coronary Artery Bypass - mortality</subject><subject>coronary artery bypass surgery</subject><subject>Female</subject><subject>heterogeneous treatment effect</subject><subject>Humans</subject><subject>ischemic heart failure</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Myocardial Ischemia - complications</subject><subject>Myocardial Ischemia - diagnostic imaging</subject><subject>Myocardial Ischemia - mortality</subject><subject>Myocardial Ischemia - surgery</subject><subject>Risk Assessment</subject><subject>Risk Factors</subject><subject>STICH</subject><subject>Stroke Volume</subject><subject>Treatment Effect Heterogeneity</subject><subject>Treatment Outcome</subject><subject>Ventricular Function, Left</subject><issn>0022-5223</issn><issn>1097-685X</issn><issn>1097-685X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFr3DAQhUVpaLZpf0Gh6NiL3ZG0lq1CDyG0TSCQSwK9CVke7Wqxra2kDfgf9GdHm0167Gku38x78x4hnxjUDJj8uqt32T6mmgMXNagaOHtDVgxUW8mu-f2WrAA4rxrOxTl5n9IOAFpg6h05F23LpGz4ivy9xowxbHDGcEg0RzR5wjlTdA5tTjQ4akMMs4kLNbGwC-2XvUmJbqJx2c8b6mfqk93i5C21Jg4-TEvYm7xdvtFLOhm79TPSEU2cj7g1h2RG6kLElKmZzbgknz6QM2fGhB9f5gV5-Pnj_uq6ur37dXN1eVtZASpXtmMo5OBUbyV0aJlE1fPODp3ia8dgkK1TyoFpur6VayGklLhuzcDWEoRg4oJ8Od3dx_DnUBzoqZjHcTTPCWjeyabtBJdtQcUJtTGkFNHpffRTCUIz0McK9E4_V6CPFWhQulRQtj6_CBz6CYd_O6-ZF-D7CcDy5qPHqJP1OFscfCyR6yH4_wo8Ae8SnAk</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhou, Zhuoming</creator><creator>Jian, Bohao</creator><creator>Chen, Xuanyu</creator><creator>Liu, Menghui</creator><creator>Zhang, Shaozhao</creator><creator>Fu, Guangguo</creator><creator>Li, Gang</creator><creator>Liang, Mengya</creator><creator>Tian, Ting</creator><creator>Wu, Zhongkai</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241101</creationdate><title>Heterogeneous treatment effects of coronary artery bypass grafting in ischemic cardiomyopathy: A machine learning causal forest analysis</title><author>Zhou, Zhuoming ; Jian, Bohao ; Chen, Xuanyu ; Liu, Menghui ; Zhang, Shaozhao ; Fu, Guangguo ; Li, Gang ; Liang, Mengya ; Tian, Ting ; Wu, Zhongkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-c81e36df9bc608ec16e9b28cd8924f10d67f99f0a58b76433666e47ad14603313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Age Factors</topic><topic>Aged</topic><topic>Cardiomyopathies - etiology</topic><topic>Cardiomyopathies - mortality</topic><topic>Cardiomyopathies - physiopathology</topic><topic>Cardiomyopathies - surgery</topic><topic>causal forest</topic><topic>Coronary Artery Bypass - adverse effects</topic><topic>Coronary Artery Bypass - methods</topic><topic>Coronary Artery Bypass - mortality</topic><topic>coronary artery bypass surgery</topic><topic>Female</topic><topic>heterogeneous treatment effect</topic><topic>Humans</topic><topic>ischemic heart failure</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Myocardial Ischemia - complications</topic><topic>Myocardial Ischemia - diagnostic imaging</topic><topic>Myocardial Ischemia - mortality</topic><topic>Myocardial Ischemia - surgery</topic><topic>Risk Assessment</topic><topic>Risk Factors</topic><topic>STICH</topic><topic>Stroke Volume</topic><topic>Treatment Effect Heterogeneity</topic><topic>Treatment Outcome</topic><topic>Ventricular Function, Left</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhuoming</creatorcontrib><creatorcontrib>Jian, Bohao</creatorcontrib><creatorcontrib>Chen, Xuanyu</creatorcontrib><creatorcontrib>Liu, Menghui</creatorcontrib><creatorcontrib>Zhang, Shaozhao</creatorcontrib><creatorcontrib>Fu, Guangguo</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Liang, Mengya</creatorcontrib><creatorcontrib>Tian, Ting</creatorcontrib><creatorcontrib>Wu, Zhongkai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of thoracic and cardiovascular surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhuoming</au><au>Jian, Bohao</au><au>Chen, Xuanyu</au><au>Liu, Menghui</au><au>Zhang, Shaozhao</au><au>Fu, Guangguo</au><au>Li, Gang</au><au>Liang, Mengya</au><au>Tian, Ting</au><au>Wu, Zhongkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous treatment effects of coronary artery bypass grafting in ischemic cardiomyopathy: A machine learning causal forest analysis</atitle><jtitle>The Journal of thoracic and cardiovascular surgery</jtitle><addtitle>J Thorac Cardiovasc Surg</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>168</volume><issue>5</issue><spage>1462</spage><epage>1471.e7</epage><pages>1462-1471.e7</pages><issn>0022-5223</issn><issn>1097-685X</issn><eissn>1097-685X</eissn><abstract>We aim to evaluate the heterogeneous treatment effects of coronary artery bypass grafting in patients with ischemic cardiomyopathy and to identify a group of patients to have greater benefits from coronary artery bypass grafting compared with medical therapy alone. Machine learning causal forest modeling was performed to identify the heterogeneous treatment effects of coronary artery bypass grafting in patients with ischemic cardiomyopathy from the Surgical Treatment for Ischemic Heart Failure trial. The risks of death from any cause and death from cardiovascular causes between coronary artery bypass grafting and medical therapy alone were assessed in the identified subgroups. Among 1212 patients enrolled in the Surgical Treatment for Ischemic Heart Failure trial, left ventricular end-systolic volume index, serum creatinine, and age were identified by the machine learning algorithm to distinguish patients with heterogeneous treatment effects. Among patients with left ventricular end-systolic volume index greater than 84 mL/m2 and age 60.27 years or less, coronary artery bypass grafting was associated with a significantly lower risk of death from any cause (adjusted hazard ratio, 0.61; 95% CI, 0.45-0.84) and death from cardiovascular causes (adjusted hazard ratio, 0.63; 95% CI, 0.45-0.89). By contrast, the survival benefits of coronary artery bypass grafting no longer exist in patients with left ventricular end-systolic volume index 84 mL/m2 or less and serum creatinine 1.04 mg/dL or less, or patients with left ventricular end-systolic volume index greater than 84 mL/m2 and age more than 60.27 years. The current post hoc analysis of the Surgical Treatment for Ischemic Heart Failure trial identified heterogeneous treatment effects of coronary artery bypass grafting in patients with ischemic cardiomyopathy. Younger patients with severe left ventricular enlargement were more likely to derive greater survival benefits from coronary artery bypass grafting. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37716652</pmid><doi>10.1016/j.jtcvs.2023.09.021</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-5223
ispartof The Journal of thoracic and cardiovascular surgery, 2024-11, Vol.168 (5), p.1462-1471.e7
issn 0022-5223
1097-685X
1097-685X
language eng
recordid cdi_proquest_miscellaneous_2865783267
source MEDLINE; Elsevier ScienceDirect Journals
subjects Age Factors
Aged
Cardiomyopathies - etiology
Cardiomyopathies - mortality
Cardiomyopathies - physiopathology
Cardiomyopathies - surgery
causal forest
Coronary Artery Bypass - adverse effects
Coronary Artery Bypass - methods
Coronary Artery Bypass - mortality
coronary artery bypass surgery
Female
heterogeneous treatment effect
Humans
ischemic heart failure
Machine Learning
Male
Middle Aged
Myocardial Ischemia - complications
Myocardial Ischemia - diagnostic imaging
Myocardial Ischemia - mortality
Myocardial Ischemia - surgery
Risk Assessment
Risk Factors
STICH
Stroke Volume
Treatment Effect Heterogeneity
Treatment Outcome
Ventricular Function, Left
title Heterogeneous treatment effects of coronary artery bypass grafting in ischemic cardiomyopathy: A machine learning causal forest analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20treatment%20effects%20of%20coronary%20artery%20bypass%20grafting%20in%20ischemic%20cardiomyopathy:%20A%20machine%20learning%20causal%20forest%20analysis&rft.jtitle=The%20Journal%20of%20thoracic%20and%20cardiovascular%20surgery&rft.au=Zhou,%20Zhuoming&rft.date=2024-11-01&rft.volume=168&rft.issue=5&rft.spage=1462&rft.epage=1471.e7&rft.pages=1462-1471.e7&rft.issn=0022-5223&rft.eissn=1097-685X&rft_id=info:doi/10.1016/j.jtcvs.2023.09.021&rft_dat=%3Cproquest_cross%3E2865783267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865783267&rft_id=info:pmid/37716652&rft_els_id=S0022522323007973&rfr_iscdi=true