Threshold logic circuit design of parallel adders using resonant tunneling devices
Resonant tunneling devices and circuit architectures based on monostable-bistable transition logic elements (MOBILEs) are promising candidates for future nanoscale integration. In this paper, the design of clocked MOBILE-type threshold logic gates and their application to arithmetic circuit componen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2000-10, Vol.8 (5), p.558-572 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Resonant tunneling devices and circuit architectures based on monostable-bistable transition logic elements (MOBILEs) are promising candidates for future nanoscale integration. In this paper, the design of clocked MOBILE-type threshold logic gates and their application to arithmetic circuit components is investigated. The gates are composed of monolithically integrated resonant tunneling diodes and heterostructure field-effect transistors. Experimental results are presented for a programmable NAND/NOR gate. Design related aspects such as the impact of lateral device scaling on the circuit performance and a bit-level pipelined operation using a four phase clocking scheme are discussed. The increased computational functionality of threshold logic gates is exploited in two full adder designs having a minimal logic depth of two circuit stages. Due to the self-latching behavior the adder designs are ideally suited for an application in a bit-level pipelined ripple carry adder. To improve the speed a novel pipelined carry lookahead addition scheme for this logic family is proposed. |
---|---|
ISSN: | 1063-8210 1557-9999 |
DOI: | 10.1109/92.894161 |