All-optical spiking neural network and optical spike-time-dependent plasticity based on the self-pulsing effect within a micro-ring resonator

In this paper, we proposed an all-optical version of photonic spiking neurons and spike-time-dependent plasticity (STDP) based on the nonlinear optical effects within a micro-ring resonator. In this system, the self-pulsing effect was exploited to implement threshold control, and the equivalent puls...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2023-07, Vol.62 (20), p.5459-5466
Hauptverfasser: Wen, Jin, Zhang, Hui, Wu, Zhengwei, Wang, Qian, Yu, Huimin, Sun, Wei, Liang, Bozhi, He, Chenyao, Xiong, Keyu, Pan, Yu, Zhang, Ying, Liu, Zhanzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5466
container_issue 20
container_start_page 5459
container_title Applied optics (2004)
container_volume 62
creator Wen, Jin
Zhang, Hui
Wu, Zhengwei
Wang, Qian
Yu, Huimin
Sun, Wei
Liang, Bozhi
He, Chenyao
Xiong, Keyu
Pan, Yu
Zhang, Ying
Liu, Zhanzhi
description In this paper, we proposed an all-optical version of photonic spiking neurons and spike-time-dependent plasticity (STDP) based on the nonlinear optical effects within a micro-ring resonator. In this system, the self-pulsing effect was exploited to implement threshold control, and the equivalent pulse energy required for spiking, calculated by multiplying the input pulse power amplitude with its duration, was about 14.1 pJ. The positive performance of the neurons in the excitability and cascadability tests validated the feasibility of this scheme. Furthermore, two simulations were performed to demonstrate that such an all-optical spiking neural network incorporated with STDP could run stably on a stochastic topology. The essence of such an all-optical spiking neural network is a nonlinear spiking dynamical system that combines the advantages of photonics and spiking neural networks (SNNs), promising access to the high speed and lower consumption inherent to optical systems.
doi_str_mv 10.1364/AO.493466
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2864900894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836018922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-33034defc497db4684ea7c9f93c1226b80dcce168d70f8e2347f32df5de5494a3</originalsourceid><addsrcrecordid>eNpdkc1qGzEUhUVpoK6TRd5A0E27UKq_kUdLE5omEPCmhewGWbqq5ciaqaQh-CHyzpVxFqGrey_n43APB6FrRm-YUPL7enMjtZBKfUALzrqOCKa6j2jRVk0Y758-oc-l7CkVndSrBXpdx0jGqQZrIi5TeA7pD04w53YmqC9jfsYmOfweAVLDAYiDCZKDVPEUTWlyqEe8NQUanXDdAS4QPZnmWE6m4D3Yil9C3YWEDT4Em0eST1KGMiZTx3yJLryJBa7e5hL9vvvx6_aePG5-PtyuH4nlmlYiBBXSgbctgttK1UswK6u9FpZxrrY9ddYCU71bUd8DF3LlBXe-c9BSSyOW6OvZd8rj3xlKHQ6hWIjRJBjnMvBeSU1pr2VDv_yH7sc5p_Zdo4SirNecN-rbmWqZSsnghymHg8nHgdHhVMyw3gznYsQ_FZeCog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836018922</pqid></control><display><type>article</type><title>All-optical spiking neural network and optical spike-time-dependent plasticity based on the self-pulsing effect within a micro-ring resonator</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Wen, Jin ; Zhang, Hui ; Wu, Zhengwei ; Wang, Qian ; Yu, Huimin ; Sun, Wei ; Liang, Bozhi ; He, Chenyao ; Xiong, Keyu ; Pan, Yu ; Zhang, Ying ; Liu, Zhanzhi</creator><creatorcontrib>Wen, Jin ; Zhang, Hui ; Wu, Zhengwei ; Wang, Qian ; Yu, Huimin ; Sun, Wei ; Liang, Bozhi ; He, Chenyao ; Xiong, Keyu ; Pan, Yu ; Zhang, Ying ; Liu, Zhanzhi</creatorcontrib><description>In this paper, we proposed an all-optical version of photonic spiking neurons and spike-time-dependent plasticity (STDP) based on the nonlinear optical effects within a micro-ring resonator. In this system, the self-pulsing effect was exploited to implement threshold control, and the equivalent pulse energy required for spiking, calculated by multiplying the input pulse power amplitude with its duration, was about 14.1 pJ. The positive performance of the neurons in the excitability and cascadability tests validated the feasibility of this scheme. Furthermore, two simulations were performed to demonstrate that such an all-optical spiking neural network incorporated with STDP could run stably on a stochastic topology. The essence of such an all-optical spiking neural network is a nonlinear spiking dynamical system that combines the advantages of photonics and spiking neural networks (SNNs), promising access to the high speed and lower consumption inherent to optical systems.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.493466</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Dynamical systems ; Neural networks ; Neurons ; Nonlinear optics ; Photonics ; Plastic properties ; Resonators ; Spiking ; Time dependence ; Topology</subject><ispartof>Applied optics (2004), 2023-07, Vol.62 (20), p.5459-5466</ispartof><rights>Copyright Optical Society of America Jul 10, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-33034defc497db4684ea7c9f93c1226b80dcce168d70f8e2347f32df5de5494a3</citedby><cites>FETCH-LOGICAL-c290t-33034defc497db4684ea7c9f93c1226b80dcce168d70f8e2347f32df5de5494a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3245,27905,27906</link.rule.ids></links><search><creatorcontrib>Wen, Jin</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Wu, Zhengwei</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Yu, Huimin</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Liang, Bozhi</creatorcontrib><creatorcontrib>He, Chenyao</creatorcontrib><creatorcontrib>Xiong, Keyu</creatorcontrib><creatorcontrib>Pan, Yu</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Liu, Zhanzhi</creatorcontrib><title>All-optical spiking neural network and optical spike-time-dependent plasticity based on the self-pulsing effect within a micro-ring resonator</title><title>Applied optics (2004)</title><description>In this paper, we proposed an all-optical version of photonic spiking neurons and spike-time-dependent plasticity (STDP) based on the nonlinear optical effects within a micro-ring resonator. In this system, the self-pulsing effect was exploited to implement threshold control, and the equivalent pulse energy required for spiking, calculated by multiplying the input pulse power amplitude with its duration, was about 14.1 pJ. The positive performance of the neurons in the excitability and cascadability tests validated the feasibility of this scheme. Furthermore, two simulations were performed to demonstrate that such an all-optical spiking neural network incorporated with STDP could run stably on a stochastic topology. The essence of such an all-optical spiking neural network is a nonlinear spiking dynamical system that combines the advantages of photonics and spiking neural networks (SNNs), promising access to the high speed and lower consumption inherent to optical systems.</description><subject>Dynamical systems</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Nonlinear optics</subject><subject>Photonics</subject><subject>Plastic properties</subject><subject>Resonators</subject><subject>Spiking</subject><subject>Time dependence</subject><subject>Topology</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc1qGzEUhUVpoK6TRd5A0E27UKq_kUdLE5omEPCmhewGWbqq5ciaqaQh-CHyzpVxFqGrey_n43APB6FrRm-YUPL7enMjtZBKfUALzrqOCKa6j2jRVk0Y758-oc-l7CkVndSrBXpdx0jGqQZrIi5TeA7pD04w53YmqC9jfsYmOfweAVLDAYiDCZKDVPEUTWlyqEe8NQUanXDdAS4QPZnmWE6m4D3Yil9C3YWEDT4Em0eST1KGMiZTx3yJLryJBa7e5hL9vvvx6_aePG5-PtyuH4nlmlYiBBXSgbctgttK1UswK6u9FpZxrrY9ddYCU71bUd8DF3LlBXe-c9BSSyOW6OvZd8rj3xlKHQ6hWIjRJBjnMvBeSU1pr2VDv_yH7sc5p_Zdo4SirNecN-rbmWqZSsnghymHg8nHgdHhVMyw3gznYsQ_FZeCog</recordid><startdate>20230710</startdate><enddate>20230710</enddate><creator>Wen, Jin</creator><creator>Zhang, Hui</creator><creator>Wu, Zhengwei</creator><creator>Wang, Qian</creator><creator>Yu, Huimin</creator><creator>Sun, Wei</creator><creator>Liang, Bozhi</creator><creator>He, Chenyao</creator><creator>Xiong, Keyu</creator><creator>Pan, Yu</creator><creator>Zhang, Ying</creator><creator>Liu, Zhanzhi</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20230710</creationdate><title>All-optical spiking neural network and optical spike-time-dependent plasticity based on the self-pulsing effect within a micro-ring resonator</title><author>Wen, Jin ; Zhang, Hui ; Wu, Zhengwei ; Wang, Qian ; Yu, Huimin ; Sun, Wei ; Liang, Bozhi ; He, Chenyao ; Xiong, Keyu ; Pan, Yu ; Zhang, Ying ; Liu, Zhanzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-33034defc497db4684ea7c9f93c1226b80dcce168d70f8e2347f32df5de5494a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dynamical systems</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Nonlinear optics</topic><topic>Photonics</topic><topic>Plastic properties</topic><topic>Resonators</topic><topic>Spiking</topic><topic>Time dependence</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Jin</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Wu, Zhengwei</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Yu, Huimin</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Liang, Bozhi</creatorcontrib><creatorcontrib>He, Chenyao</creatorcontrib><creatorcontrib>Xiong, Keyu</creatorcontrib><creatorcontrib>Pan, Yu</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Liu, Zhanzhi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Jin</au><au>Zhang, Hui</au><au>Wu, Zhengwei</au><au>Wang, Qian</au><au>Yu, Huimin</au><au>Sun, Wei</au><au>Liang, Bozhi</au><au>He, Chenyao</au><au>Xiong, Keyu</au><au>Pan, Yu</au><au>Zhang, Ying</au><au>Liu, Zhanzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-optical spiking neural network and optical spike-time-dependent plasticity based on the self-pulsing effect within a micro-ring resonator</atitle><jtitle>Applied optics (2004)</jtitle><date>2023-07-10</date><risdate>2023</risdate><volume>62</volume><issue>20</issue><spage>5459</spage><epage>5466</epage><pages>5459-5466</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>In this paper, we proposed an all-optical version of photonic spiking neurons and spike-time-dependent plasticity (STDP) based on the nonlinear optical effects within a micro-ring resonator. In this system, the self-pulsing effect was exploited to implement threshold control, and the equivalent pulse energy required for spiking, calculated by multiplying the input pulse power amplitude with its duration, was about 14.1 pJ. The positive performance of the neurons in the excitability and cascadability tests validated the feasibility of this scheme. Furthermore, two simulations were performed to demonstrate that such an all-optical spiking neural network incorporated with STDP could run stably on a stochastic topology. The essence of such an all-optical spiking neural network is a nonlinear spiking dynamical system that combines the advantages of photonics and spiking neural networks (SNNs), promising access to the high speed and lower consumption inherent to optical systems.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/AO.493466</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2023-07, Vol.62 (20), p.5459-5466
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_2864900894
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Dynamical systems
Neural networks
Neurons
Nonlinear optics
Photonics
Plastic properties
Resonators
Spiking
Time dependence
Topology
title All-optical spiking neural network and optical spike-time-dependent plasticity based on the self-pulsing effect within a micro-ring resonator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-optical%20spiking%20neural%20network%20and%20optical%20spike-time-dependent%20plasticity%20based%20on%20the%20self-pulsing%20effect%20within%20a%20micro-ring%20resonator&rft.jtitle=Applied%20optics%20(2004)&rft.au=Wen,%20Jin&rft.date=2023-07-10&rft.volume=62&rft.issue=20&rft.spage=5459&rft.epage=5466&rft.pages=5459-5466&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.493466&rft_dat=%3Cproquest_cross%3E2836018922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836018922&rft_id=info:pmid/&rfr_iscdi=true