Detection and mapping of the seasonal distribution of water hyacinth (Eichhornia crassipes) and valorization as a biosorbent of Pb(II) in water

In the present research, the presence of water hyacinth ( Eichhornia crassipes ) on the surface of the San Jose Dam located in the city of San Luis Potosi, S.L.P, Mexico, was monitored and mapped. The monitoring was conducted for 2 years (2018–2020) with remote sensing data from OLI Landsat 8 sensor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2024-06, Vol.31 (28), p.40190-40207
Hauptverfasser: Flores-Rojas, Alfredo Israel, Medellín-Castillo, Nahum Andrés, Cisneros-Ontiveros, Hilda Guadalupe, Acosta-Doporto, Geiler Abadallan, Cruz-Briano, Sergio Armando, Leyva-Ramos, Roberto, Berber-Mendoza, María Selene, Díaz-Flores, Paola Elizabeth, Ocampo-Pérez, Raúl, Labrada-Delgado, Gladis Judith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40207
container_issue 28
container_start_page 40190
container_title Environmental science and pollution research international
container_volume 31
creator Flores-Rojas, Alfredo Israel
Medellín-Castillo, Nahum Andrés
Cisneros-Ontiveros, Hilda Guadalupe
Acosta-Doporto, Geiler Abadallan
Cruz-Briano, Sergio Armando
Leyva-Ramos, Roberto
Berber-Mendoza, María Selene
Díaz-Flores, Paola Elizabeth
Ocampo-Pérez, Raúl
Labrada-Delgado, Gladis Judith
description In the present research, the presence of water hyacinth ( Eichhornia crassipes ) on the surface of the San Jose Dam located in the city of San Luis Potosi, S.L.P, Mexico, was monitored and mapped. The monitoring was conducted for 2 years (2018–2020) with remote sensing data from OLI Landsat 8 sensors, based on the normalized difference vegetation index (NDVI). The results demonstrated the capability and accuracy of this method, where it was observed that the aboveground cover area, proliferation, and distribution of water hyacinth are influenced by climatic and anthropogenic factors during the four seasons of the year. As part of a sustainable environmental control of this invasive species, the use of water hyacinth (WH) root (RO), stem (ST), and leaf (LE) components as adsorbent material for Pb(II) present in aqueous solution was proposed. The maximum adsorption capacity was observed at pH 5 and 25 °C and was 107.3, 136.8, and 120.8 mg g −1 for RO, ST, and LE, respectively. The physicochemical characterization of WH consisted of scanning electron microscopy (SEM), N 2 physisorption, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), charge distribution, and zero charge point (pH PZC ). Due to the chemical nature of WH, several Pb(II) adsorption mechanisms were proposed such as electrostatic attractions, ion exchange, microprecipitation, and π-cation.
doi_str_mv 10.1007/s11356-023-29780-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2864897997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864897997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-b8629681b12f56f347d0ecc314e75d11fcf02f6121056e06f41bc4b33b9a3e443</originalsourceid><addsrcrecordid>eNp9kc1u1TAQRiMEoqXwAiyQJTa3i4D_EsdL1BZ6pUqwgLVlO3bjKtcOHqdVeQlemfSmtBULVrY0Z84nzVdVbwn-QDAWH4EQ1rQ1pqymUnS4Zs-qQ9ISXgsu5fMn_4PqFcAVxhRLKl5WB0wIzDvSHFa_T11xtoQUkY492ulpCvESJY_K4BA4DSnqEfUBSg5m3oPL8EYXl9Fwq22IZUCbs2CHIeUYNLJZA4TJwfHeeK3HlMMvvUYA0siEBCkbF8ud6ZvZbLfHKMTV-bp64fUI7s39e1T9-Hz2_eS8vvj6ZXvy6aK2TDSlNl1LZdsRQ6hvWs-46LGzlhHuRNMT4q3H1LeEEty0DreeE2O5YcxIzRzn7KjarN4pp5-zg6J2AawbRx1dmkHRruWdFFKKBX3_D3qV5rxcBRTDAi8ZHZULRVfK5gSQnVdTDjudbxXB6q4utdallrrUvi7FlqV39-rZ7Fz_sPK3nwVgKwDLKF66_Jj9H-0fTNqgiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070121829</pqid></control><display><type>article</type><title>Detection and mapping of the seasonal distribution of water hyacinth (Eichhornia crassipes) and valorization as a biosorbent of Pb(II) in water</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Flores-Rojas, Alfredo Israel ; Medellín-Castillo, Nahum Andrés ; Cisneros-Ontiveros, Hilda Guadalupe ; Acosta-Doporto, Geiler Abadallan ; Cruz-Briano, Sergio Armando ; Leyva-Ramos, Roberto ; Berber-Mendoza, María Selene ; Díaz-Flores, Paola Elizabeth ; Ocampo-Pérez, Raúl ; Labrada-Delgado, Gladis Judith</creator><creatorcontrib>Flores-Rojas, Alfredo Israel ; Medellín-Castillo, Nahum Andrés ; Cisneros-Ontiveros, Hilda Guadalupe ; Acosta-Doporto, Geiler Abadallan ; Cruz-Briano, Sergio Armando ; Leyva-Ramos, Roberto ; Berber-Mendoza, María Selene ; Díaz-Flores, Paola Elizabeth ; Ocampo-Pérez, Raúl ; Labrada-Delgado, Gladis Judith</creatorcontrib><description>In the present research, the presence of water hyacinth ( Eichhornia crassipes ) on the surface of the San Jose Dam located in the city of San Luis Potosi, S.L.P, Mexico, was monitored and mapped. The monitoring was conducted for 2 years (2018–2020) with remote sensing data from OLI Landsat 8 sensors, based on the normalized difference vegetation index (NDVI). The results demonstrated the capability and accuracy of this method, where it was observed that the aboveground cover area, proliferation, and distribution of water hyacinth are influenced by climatic and anthropogenic factors during the four seasons of the year. As part of a sustainable environmental control of this invasive species, the use of water hyacinth (WH) root (RO), stem (ST), and leaf (LE) components as adsorbent material for Pb(II) present in aqueous solution was proposed. The maximum adsorption capacity was observed at pH 5 and 25 °C and was 107.3, 136.8, and 120.8 mg g −1 for RO, ST, and LE, respectively. The physicochemical characterization of WH consisted of scanning electron microscopy (SEM), N 2 physisorption, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), charge distribution, and zero charge point (pH PZC ). Due to the chemical nature of WH, several Pb(II) adsorption mechanisms were proposed such as electrostatic attractions, ion exchange, microprecipitation, and π-cation.</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-023-29780-3</identifier><identifier>PMID: 37704815</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorbents ; Adsorption ; Anthropogenic factors ; Aquatic plants ; Aquatic Pollution ; Aqueous solutions ; Atmospheric Protection/Air Quality Control/Air Pollution ; Charge distribution ; Earth and Environmental Science ; Ecotoxicology ; Eichhornia ; Eichhornia crassipes ; Environment ; Environmental Chemistry ; Environmental control ; Environmental Health ; Environmental management ; Floating plants ; Heavy metals ; Human influences ; Infrared analysis ; Infrared spectroscopy ; Introduced species ; Invasive species ; Ion exchange ; Landsat ; Lead ; Mexico ; Nonnative species ; Normalized difference vegetative index ; Pollutants ; Remote sensing ; Remote sensors ; Scanning electron microscopy ; Seasonal distribution ; Seasons ; Sensors ; Special Adsorbent Materials for Retention and Degradation of Pollutants from Fluid Phases ; Thermogravimetric analysis ; Waste Water Technology ; Water ; Water - chemistry ; Water hyacinths ; Water Management ; Water Pollutants, Chemical ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2024-06, Vol.31 (28), p.40190-40207</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-b8629681b12f56f347d0ecc314e75d11fcf02f6121056e06f41bc4b33b9a3e443</citedby><cites>FETCH-LOGICAL-c375t-b8629681b12f56f347d0ecc314e75d11fcf02f6121056e06f41bc4b33b9a3e443</cites><orcidid>0000-0001-9245-8016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-023-29780-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-023-29780-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37704815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flores-Rojas, Alfredo Israel</creatorcontrib><creatorcontrib>Medellín-Castillo, Nahum Andrés</creatorcontrib><creatorcontrib>Cisneros-Ontiveros, Hilda Guadalupe</creatorcontrib><creatorcontrib>Acosta-Doporto, Geiler Abadallan</creatorcontrib><creatorcontrib>Cruz-Briano, Sergio Armando</creatorcontrib><creatorcontrib>Leyva-Ramos, Roberto</creatorcontrib><creatorcontrib>Berber-Mendoza, María Selene</creatorcontrib><creatorcontrib>Díaz-Flores, Paola Elizabeth</creatorcontrib><creatorcontrib>Ocampo-Pérez, Raúl</creatorcontrib><creatorcontrib>Labrada-Delgado, Gladis Judith</creatorcontrib><title>Detection and mapping of the seasonal distribution of water hyacinth (Eichhornia crassipes) and valorization as a biosorbent of Pb(II) in water</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>In the present research, the presence of water hyacinth ( Eichhornia crassipes ) on the surface of the San Jose Dam located in the city of San Luis Potosi, S.L.P, Mexico, was monitored and mapped. The monitoring was conducted for 2 years (2018–2020) with remote sensing data from OLI Landsat 8 sensors, based on the normalized difference vegetation index (NDVI). The results demonstrated the capability and accuracy of this method, where it was observed that the aboveground cover area, proliferation, and distribution of water hyacinth are influenced by climatic and anthropogenic factors during the four seasons of the year. As part of a sustainable environmental control of this invasive species, the use of water hyacinth (WH) root (RO), stem (ST), and leaf (LE) components as adsorbent material for Pb(II) present in aqueous solution was proposed. The maximum adsorption capacity was observed at pH 5 and 25 °C and was 107.3, 136.8, and 120.8 mg g −1 for RO, ST, and LE, respectively. The physicochemical characterization of WH consisted of scanning electron microscopy (SEM), N 2 physisorption, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), charge distribution, and zero charge point (pH PZC ). Due to the chemical nature of WH, several Pb(II) adsorption mechanisms were proposed such as electrostatic attractions, ion exchange, microprecipitation, and π-cation.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Anthropogenic factors</subject><subject>Aquatic plants</subject><subject>Aquatic Pollution</subject><subject>Aqueous solutions</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Charge distribution</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Eichhornia</subject><subject>Eichhornia crassipes</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental control</subject><subject>Environmental Health</subject><subject>Environmental management</subject><subject>Floating plants</subject><subject>Heavy metals</subject><subject>Human influences</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Introduced species</subject><subject>Invasive species</subject><subject>Ion exchange</subject><subject>Landsat</subject><subject>Lead</subject><subject>Mexico</subject><subject>Nonnative species</subject><subject>Normalized difference vegetative index</subject><subject>Pollutants</subject><subject>Remote sensing</subject><subject>Remote sensors</subject><subject>Scanning electron microscopy</subject><subject>Seasonal distribution</subject><subject>Seasons</subject><subject>Sensors</subject><subject>Special Adsorbent Materials for Retention and Degradation of Pollutants from Fluid Phases</subject><subject>Thermogravimetric analysis</subject><subject>Waste Water Technology</subject><subject>Water</subject><subject>Water - chemistry</subject><subject>Water hyacinths</subject><subject>Water Management</subject><subject>Water Pollutants, Chemical</subject><subject>Water Pollution Control</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1TAQRiMEoqXwAiyQJTa3i4D_EsdL1BZ6pUqwgLVlO3bjKtcOHqdVeQlemfSmtBULVrY0Z84nzVdVbwn-QDAWH4EQ1rQ1pqymUnS4Zs-qQ9ISXgsu5fMn_4PqFcAVxhRLKl5WB0wIzDvSHFa_T11xtoQUkY492ulpCvESJY_K4BA4DSnqEfUBSg5m3oPL8EYXl9Fwq22IZUCbs2CHIeUYNLJZA4TJwfHeeK3HlMMvvUYA0siEBCkbF8ud6ZvZbLfHKMTV-bp64fUI7s39e1T9-Hz2_eS8vvj6ZXvy6aK2TDSlNl1LZdsRQ6hvWs-46LGzlhHuRNMT4q3H1LeEEty0DreeE2O5YcxIzRzn7KjarN4pp5-zg6J2AawbRx1dmkHRruWdFFKKBX3_D3qV5rxcBRTDAi8ZHZULRVfK5gSQnVdTDjudbxXB6q4utdallrrUvi7FlqV39-rZ7Fz_sPK3nwVgKwDLKF66_Jj9H-0fTNqgiw</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Flores-Rojas, Alfredo Israel</creator><creator>Medellín-Castillo, Nahum Andrés</creator><creator>Cisneros-Ontiveros, Hilda Guadalupe</creator><creator>Acosta-Doporto, Geiler Abadallan</creator><creator>Cruz-Briano, Sergio Armando</creator><creator>Leyva-Ramos, Roberto</creator><creator>Berber-Mendoza, María Selene</creator><creator>Díaz-Flores, Paola Elizabeth</creator><creator>Ocampo-Pérez, Raúl</creator><creator>Labrada-Delgado, Gladis Judith</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9245-8016</orcidid></search><sort><creationdate>202406</creationdate><title>Detection and mapping of the seasonal distribution of water hyacinth (Eichhornia crassipes) and valorization as a biosorbent of Pb(II) in water</title><author>Flores-Rojas, Alfredo Israel ; Medellín-Castillo, Nahum Andrés ; Cisneros-Ontiveros, Hilda Guadalupe ; Acosta-Doporto, Geiler Abadallan ; Cruz-Briano, Sergio Armando ; Leyva-Ramos, Roberto ; Berber-Mendoza, María Selene ; Díaz-Flores, Paola Elizabeth ; Ocampo-Pérez, Raúl ; Labrada-Delgado, Gladis Judith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-b8629681b12f56f347d0ecc314e75d11fcf02f6121056e06f41bc4b33b9a3e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Anthropogenic factors</topic><topic>Aquatic plants</topic><topic>Aquatic Pollution</topic><topic>Aqueous solutions</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Charge distribution</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Eichhornia</topic><topic>Eichhornia crassipes</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental control</topic><topic>Environmental Health</topic><topic>Environmental management</topic><topic>Floating plants</topic><topic>Heavy metals</topic><topic>Human influences</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Introduced species</topic><topic>Invasive species</topic><topic>Ion exchange</topic><topic>Landsat</topic><topic>Lead</topic><topic>Mexico</topic><topic>Nonnative species</topic><topic>Normalized difference vegetative index</topic><topic>Pollutants</topic><topic>Remote sensing</topic><topic>Remote sensors</topic><topic>Scanning electron microscopy</topic><topic>Seasonal distribution</topic><topic>Seasons</topic><topic>Sensors</topic><topic>Special Adsorbent Materials for Retention and Degradation of Pollutants from Fluid Phases</topic><topic>Thermogravimetric analysis</topic><topic>Waste Water Technology</topic><topic>Water</topic><topic>Water - chemistry</topic><topic>Water hyacinths</topic><topic>Water Management</topic><topic>Water Pollutants, Chemical</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores-Rojas, Alfredo Israel</creatorcontrib><creatorcontrib>Medellín-Castillo, Nahum Andrés</creatorcontrib><creatorcontrib>Cisneros-Ontiveros, Hilda Guadalupe</creatorcontrib><creatorcontrib>Acosta-Doporto, Geiler Abadallan</creatorcontrib><creatorcontrib>Cruz-Briano, Sergio Armando</creatorcontrib><creatorcontrib>Leyva-Ramos, Roberto</creatorcontrib><creatorcontrib>Berber-Mendoza, María Selene</creatorcontrib><creatorcontrib>Díaz-Flores, Paola Elizabeth</creatorcontrib><creatorcontrib>Ocampo-Pérez, Raúl</creatorcontrib><creatorcontrib>Labrada-Delgado, Gladis Judith</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores-Rojas, Alfredo Israel</au><au>Medellín-Castillo, Nahum Andrés</au><au>Cisneros-Ontiveros, Hilda Guadalupe</au><au>Acosta-Doporto, Geiler Abadallan</au><au>Cruz-Briano, Sergio Armando</au><au>Leyva-Ramos, Roberto</au><au>Berber-Mendoza, María Selene</au><au>Díaz-Flores, Paola Elizabeth</au><au>Ocampo-Pérez, Raúl</au><au>Labrada-Delgado, Gladis Judith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and mapping of the seasonal distribution of water hyacinth (Eichhornia crassipes) and valorization as a biosorbent of Pb(II) in water</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2024-06</date><risdate>2024</risdate><volume>31</volume><issue>28</issue><spage>40190</spage><epage>40207</epage><pages>40190-40207</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>In the present research, the presence of water hyacinth ( Eichhornia crassipes ) on the surface of the San Jose Dam located in the city of San Luis Potosi, S.L.P, Mexico, was monitored and mapped. The monitoring was conducted for 2 years (2018–2020) with remote sensing data from OLI Landsat 8 sensors, based on the normalized difference vegetation index (NDVI). The results demonstrated the capability and accuracy of this method, where it was observed that the aboveground cover area, proliferation, and distribution of water hyacinth are influenced by climatic and anthropogenic factors during the four seasons of the year. As part of a sustainable environmental control of this invasive species, the use of water hyacinth (WH) root (RO), stem (ST), and leaf (LE) components as adsorbent material for Pb(II) present in aqueous solution was proposed. The maximum adsorption capacity was observed at pH 5 and 25 °C and was 107.3, 136.8, and 120.8 mg g −1 for RO, ST, and LE, respectively. The physicochemical characterization of WH consisted of scanning electron microscopy (SEM), N 2 physisorption, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), charge distribution, and zero charge point (pH PZC ). Due to the chemical nature of WH, several Pb(II) adsorption mechanisms were proposed such as electrostatic attractions, ion exchange, microprecipitation, and π-cation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37704815</pmid><doi>10.1007/s11356-023-29780-3</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9245-8016</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-7499
ispartof Environmental science and pollution research international, 2024-06, Vol.31 (28), p.40190-40207
issn 1614-7499
0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_2864897997
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adsorbents
Adsorption
Anthropogenic factors
Aquatic plants
Aquatic Pollution
Aqueous solutions
Atmospheric Protection/Air Quality Control/Air Pollution
Charge distribution
Earth and Environmental Science
Ecotoxicology
Eichhornia
Eichhornia crassipes
Environment
Environmental Chemistry
Environmental control
Environmental Health
Environmental management
Floating plants
Heavy metals
Human influences
Infrared analysis
Infrared spectroscopy
Introduced species
Invasive species
Ion exchange
Landsat
Lead
Mexico
Nonnative species
Normalized difference vegetative index
Pollutants
Remote sensing
Remote sensors
Scanning electron microscopy
Seasonal distribution
Seasons
Sensors
Special Adsorbent Materials for Retention and Degradation of Pollutants from Fluid Phases
Thermogravimetric analysis
Waste Water Technology
Water
Water - chemistry
Water hyacinths
Water Management
Water Pollutants, Chemical
Water Pollution Control
title Detection and mapping of the seasonal distribution of water hyacinth (Eichhornia crassipes) and valorization as a biosorbent of Pb(II) in water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20mapping%20of%20the%20seasonal%20distribution%20of%20water%20hyacinth%20(Eichhornia%20crassipes)%20and%20valorization%20as%20a%20biosorbent%20of%20Pb(II)%20in%20water&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Flores-Rojas,%20Alfredo%20Israel&rft.date=2024-06&rft.volume=31&rft.issue=28&rft.spage=40190&rft.epage=40207&rft.pages=40190-40207&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-023-29780-3&rft_dat=%3Cproquest_cross%3E2864897997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070121829&rft_id=info:pmid/37704815&rfr_iscdi=true