Gel Biopolymer Electrolytes Based on Saline Water and Seaweed to Support the Large‐Scale Production of Sustainable Supercapacitors
Climate change and the demand for clean energy have challenged scientists worldwide to produce/store more energy to reduce carbon emissions. This work proposes a conductive gel biopolymer electrolyte to support the sustainable development of high‐power aqueous supercapacitors. The gel uses saline wa...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2024-01, Vol.17 (2), p.e202300884-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e202300884 |
container_title | ChemSusChem |
container_volume | 17 |
creator | Santa‐Cruz, Larissa A. Mantovi, Primaggio S. Loguercio, Lara F. Galvão, Rhauane A. Navarro, Marcelo Passos, Saulo T. A. Neto, Brenno A. D. Tavares, Fabiele C. Torresi, Roberto M. Machado, Giovanna |
description | Climate change and the demand for clean energy have challenged scientists worldwide to produce/store more energy to reduce carbon emissions. This work proposes a conductive gel biopolymer electrolyte to support the sustainable development of high‐power aqueous supercapacitors. The gel uses saline water and seaweed as sustainable resources. Herein, a biopolymer agar‐agar, extracted from red algae, is modified to increase gel viscosity up to 17‐fold. This occurs due to alkaline treatment and an increase in the concentration of the agar‐agar biopolymer, resulting in a strengthened gel with cohesive superfibres. The thermal degradation and agar modification mechanisms are explored. The electrolyte is applied to manufacture sustainable and flexible supercapacitors with satisfactory energy density (0.764 Wh kg−1) and power density (230 W kg−1). As an electrolyte, the aqueous gel promotes a long device cycle life (3500 cycles) for 1 A g−1, showing good transport properties and low cost of acquisition and enabling the supercapacitor to be manufactured outside a glove box. These features decrease the cost of production and favor scale‐up. To this end, this work provides eco‐friendly electrolytes for the next generation of flexible energy storage devices.
Seaweed‐based was used as conductive gel for eco‐friendly supercapacitors, offering high energy, long life, and low cost. Manufacturing is glove‐box‐free, reducing costs and enabling scale‐up. |
doi_str_mv | 10.1002/cssc.202300884 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2864896654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864896654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-e39fde1da0fca09e66ea02b7cce96669f3658bcc0801e32f8b7fb5cb49800c303</originalsourceid><addsrcrecordid>eNqFkc-KFDEQh4Mo7h-9epSAFy8zVpLudHJ0h3VXGFBoRW8hna7WXjKdNkmzzM2DD-Az-iRmmXUEL56SUF99VOpHyDMGawbAX7mU3JoDFwBKVQ_IKVOyWtWy-vzweBfshJyldAMgQUv5mJyIpoGmBnZKflyhpxdjmIPf7zDSS48ux_LImOiFTdjTMNHW-nFC-snmgtippy3aWyy1HGi7zHOImeavSLc2fsFf33-2znqk72PoF5fHIghD4VK242S7Uik9GJ2drRtziOkJeTRYn_Dp_XlOPr65_LC5Xm3fXb3dvN6unOCqWqHQQ4-stzA4CxqlRAu8a5zD8i2pByFr1TkHChgKPqiuGbradZVWAE6AOCcvD945hm8Lpmx2Y3LovZ0wLMnwsi9VVHVV0Bf_oDdhiVOZznDNtGZlf7xQ6wPlYkgp4mDmOO5s3BsG5i4fc5ePOeZTGp7fa5duh_0R_xNIAfQBuB097v-jM5u23fyV_wZycZ9p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919910752</pqid></control><display><type>article</type><title>Gel Biopolymer Electrolytes Based on Saline Water and Seaweed to Support the Large‐Scale Production of Sustainable Supercapacitors</title><source>Wiley-Blackwell Journals</source><creator>Santa‐Cruz, Larissa A. ; Mantovi, Primaggio S. ; Loguercio, Lara F. ; Galvão, Rhauane A. ; Navarro, Marcelo ; Passos, Saulo T. A. ; Neto, Brenno A. D. ; Tavares, Fabiele C. ; Torresi, Roberto M. ; Machado, Giovanna</creator><creatorcontrib>Santa‐Cruz, Larissa A. ; Mantovi, Primaggio S. ; Loguercio, Lara F. ; Galvão, Rhauane A. ; Navarro, Marcelo ; Passos, Saulo T. A. ; Neto, Brenno A. D. ; Tavares, Fabiele C. ; Torresi, Roberto M. ; Machado, Giovanna</creatorcontrib><description>Climate change and the demand for clean energy have challenged scientists worldwide to produce/store more energy to reduce carbon emissions. This work proposes a conductive gel biopolymer electrolyte to support the sustainable development of high‐power aqueous supercapacitors. The gel uses saline water and seaweed as sustainable resources. Herein, a biopolymer agar‐agar, extracted from red algae, is modified to increase gel viscosity up to 17‐fold. This occurs due to alkaline treatment and an increase in the concentration of the agar‐agar biopolymer, resulting in a strengthened gel with cohesive superfibres. The thermal degradation and agar modification mechanisms are explored. The electrolyte is applied to manufacture sustainable and flexible supercapacitors with satisfactory energy density (0.764 Wh kg−1) and power density (230 W kg−1). As an electrolyte, the aqueous gel promotes a long device cycle life (3500 cycles) for 1 A g−1, showing good transport properties and low cost of acquisition and enabling the supercapacitor to be manufactured outside a glove box. These features decrease the cost of production and favor scale‐up. To this end, this work provides eco‐friendly electrolytes for the next generation of flexible energy storage devices.
Seaweed‐based was used as conductive gel for eco‐friendly supercapacitors, offering high energy, long life, and low cost. Manufacturing is glove‐box‐free, reducing costs and enabling scale‐up.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202300884</identifier><identifier>PMID: 37707501</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Agar ; aqueous electrolyte ; Biopolymers ; Clean energy ; Electrolytes ; Emissions ; Energy storage ; gel biopolymer electrolyte •, sustainable ; Saline water ; Seaweeds ; supercapacitor ; Supercapacitors ; Sustainable development ; Thermal degradation ; Transport properties</subject><ispartof>ChemSusChem, 2024-01, Vol.17 (2), p.e202300884-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3284-e39fde1da0fca09e66ea02b7cce96669f3658bcc0801e32f8b7fb5cb49800c303</cites><orcidid>0000-0002-5512-1649 ; 0000-0002-9058-3056 ; 0000-0002-8177-7828 ; 0000-0003-3783-9283 ; 0000-0001-7391-0556 ; 0000-0003-2061-0415 ; 0000-0001-7210-3357 ; 0000-0003-4414-5431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202300884$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202300884$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37707501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santa‐Cruz, Larissa A.</creatorcontrib><creatorcontrib>Mantovi, Primaggio S.</creatorcontrib><creatorcontrib>Loguercio, Lara F.</creatorcontrib><creatorcontrib>Galvão, Rhauane A.</creatorcontrib><creatorcontrib>Navarro, Marcelo</creatorcontrib><creatorcontrib>Passos, Saulo T. A.</creatorcontrib><creatorcontrib>Neto, Brenno A. D.</creatorcontrib><creatorcontrib>Tavares, Fabiele C.</creatorcontrib><creatorcontrib>Torresi, Roberto M.</creatorcontrib><creatorcontrib>Machado, Giovanna</creatorcontrib><title>Gel Biopolymer Electrolytes Based on Saline Water and Seaweed to Support the Large‐Scale Production of Sustainable Supercapacitors</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Climate change and the demand for clean energy have challenged scientists worldwide to produce/store more energy to reduce carbon emissions. This work proposes a conductive gel biopolymer electrolyte to support the sustainable development of high‐power aqueous supercapacitors. The gel uses saline water and seaweed as sustainable resources. Herein, a biopolymer agar‐agar, extracted from red algae, is modified to increase gel viscosity up to 17‐fold. This occurs due to alkaline treatment and an increase in the concentration of the agar‐agar biopolymer, resulting in a strengthened gel with cohesive superfibres. The thermal degradation and agar modification mechanisms are explored. The electrolyte is applied to manufacture sustainable and flexible supercapacitors with satisfactory energy density (0.764 Wh kg−1) and power density (230 W kg−1). As an electrolyte, the aqueous gel promotes a long device cycle life (3500 cycles) for 1 A g−1, showing good transport properties and low cost of acquisition and enabling the supercapacitor to be manufactured outside a glove box. These features decrease the cost of production and favor scale‐up. To this end, this work provides eco‐friendly electrolytes for the next generation of flexible energy storage devices.
Seaweed‐based was used as conductive gel for eco‐friendly supercapacitors, offering high energy, long life, and low cost. Manufacturing is glove‐box‐free, reducing costs and enabling scale‐up.</description><subject>Agar</subject><subject>aqueous electrolyte</subject><subject>Biopolymers</subject><subject>Clean energy</subject><subject>Electrolytes</subject><subject>Emissions</subject><subject>Energy storage</subject><subject>gel biopolymer electrolyte •, sustainable</subject><subject>Saline water</subject><subject>Seaweeds</subject><subject>supercapacitor</subject><subject>Supercapacitors</subject><subject>Sustainable development</subject><subject>Thermal degradation</subject><subject>Transport properties</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc-KFDEQh4Mo7h-9epSAFy8zVpLudHJ0h3VXGFBoRW8hna7WXjKdNkmzzM2DD-Az-iRmmXUEL56SUF99VOpHyDMGawbAX7mU3JoDFwBKVQ_IKVOyWtWy-vzweBfshJyldAMgQUv5mJyIpoGmBnZKflyhpxdjmIPf7zDSS48ux_LImOiFTdjTMNHW-nFC-snmgtippy3aWyy1HGi7zHOImeavSLc2fsFf33-2znqk72PoF5fHIghD4VK242S7Uik9GJ2drRtziOkJeTRYn_Dp_XlOPr65_LC5Xm3fXb3dvN6unOCqWqHQQ4-stzA4CxqlRAu8a5zD8i2pByFr1TkHChgKPqiuGbradZVWAE6AOCcvD945hm8Lpmx2Y3LovZ0wLMnwsi9VVHVV0Bf_oDdhiVOZznDNtGZlf7xQ6wPlYkgp4mDmOO5s3BsG5i4fc5ePOeZTGp7fa5duh_0R_xNIAfQBuB097v-jM5u23fyV_wZycZ9p</recordid><startdate>20240122</startdate><enddate>20240122</enddate><creator>Santa‐Cruz, Larissa A.</creator><creator>Mantovi, Primaggio S.</creator><creator>Loguercio, Lara F.</creator><creator>Galvão, Rhauane A.</creator><creator>Navarro, Marcelo</creator><creator>Passos, Saulo T. A.</creator><creator>Neto, Brenno A. D.</creator><creator>Tavares, Fabiele C.</creator><creator>Torresi, Roberto M.</creator><creator>Machado, Giovanna</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5512-1649</orcidid><orcidid>https://orcid.org/0000-0002-9058-3056</orcidid><orcidid>https://orcid.org/0000-0002-8177-7828</orcidid><orcidid>https://orcid.org/0000-0003-3783-9283</orcidid><orcidid>https://orcid.org/0000-0001-7391-0556</orcidid><orcidid>https://orcid.org/0000-0003-2061-0415</orcidid><orcidid>https://orcid.org/0000-0001-7210-3357</orcidid><orcidid>https://orcid.org/0000-0003-4414-5431</orcidid></search><sort><creationdate>20240122</creationdate><title>Gel Biopolymer Electrolytes Based on Saline Water and Seaweed to Support the Large‐Scale Production of Sustainable Supercapacitors</title><author>Santa‐Cruz, Larissa A. ; Mantovi, Primaggio S. ; Loguercio, Lara F. ; Galvão, Rhauane A. ; Navarro, Marcelo ; Passos, Saulo T. A. ; Neto, Brenno A. D. ; Tavares, Fabiele C. ; Torresi, Roberto M. ; Machado, Giovanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-e39fde1da0fca09e66ea02b7cce96669f3658bcc0801e32f8b7fb5cb49800c303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agar</topic><topic>aqueous electrolyte</topic><topic>Biopolymers</topic><topic>Clean energy</topic><topic>Electrolytes</topic><topic>Emissions</topic><topic>Energy storage</topic><topic>gel biopolymer electrolyte •, sustainable</topic><topic>Saline water</topic><topic>Seaweeds</topic><topic>supercapacitor</topic><topic>Supercapacitors</topic><topic>Sustainable development</topic><topic>Thermal degradation</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santa‐Cruz, Larissa A.</creatorcontrib><creatorcontrib>Mantovi, Primaggio S.</creatorcontrib><creatorcontrib>Loguercio, Lara F.</creatorcontrib><creatorcontrib>Galvão, Rhauane A.</creatorcontrib><creatorcontrib>Navarro, Marcelo</creatorcontrib><creatorcontrib>Passos, Saulo T. A.</creatorcontrib><creatorcontrib>Neto, Brenno A. D.</creatorcontrib><creatorcontrib>Tavares, Fabiele C.</creatorcontrib><creatorcontrib>Torresi, Roberto M.</creatorcontrib><creatorcontrib>Machado, Giovanna</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santa‐Cruz, Larissa A.</au><au>Mantovi, Primaggio S.</au><au>Loguercio, Lara F.</au><au>Galvão, Rhauane A.</au><au>Navarro, Marcelo</au><au>Passos, Saulo T. A.</au><au>Neto, Brenno A. D.</au><au>Tavares, Fabiele C.</au><au>Torresi, Roberto M.</au><au>Machado, Giovanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gel Biopolymer Electrolytes Based on Saline Water and Seaweed to Support the Large‐Scale Production of Sustainable Supercapacitors</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2024-01-22</date><risdate>2024</risdate><volume>17</volume><issue>2</issue><spage>e202300884</spage><epage>n/a</epage><pages>e202300884-n/a</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Climate change and the demand for clean energy have challenged scientists worldwide to produce/store more energy to reduce carbon emissions. This work proposes a conductive gel biopolymer electrolyte to support the sustainable development of high‐power aqueous supercapacitors. The gel uses saline water and seaweed as sustainable resources. Herein, a biopolymer agar‐agar, extracted from red algae, is modified to increase gel viscosity up to 17‐fold. This occurs due to alkaline treatment and an increase in the concentration of the agar‐agar biopolymer, resulting in a strengthened gel with cohesive superfibres. The thermal degradation and agar modification mechanisms are explored. The electrolyte is applied to manufacture sustainable and flexible supercapacitors with satisfactory energy density (0.764 Wh kg−1) and power density (230 W kg−1). As an electrolyte, the aqueous gel promotes a long device cycle life (3500 cycles) for 1 A g−1, showing good transport properties and low cost of acquisition and enabling the supercapacitor to be manufactured outside a glove box. These features decrease the cost of production and favor scale‐up. To this end, this work provides eco‐friendly electrolytes for the next generation of flexible energy storage devices.
Seaweed‐based was used as conductive gel for eco‐friendly supercapacitors, offering high energy, long life, and low cost. Manufacturing is glove‐box‐free, reducing costs and enabling scale‐up.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37707501</pmid><doi>10.1002/cssc.202300884</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5512-1649</orcidid><orcidid>https://orcid.org/0000-0002-9058-3056</orcidid><orcidid>https://orcid.org/0000-0002-8177-7828</orcidid><orcidid>https://orcid.org/0000-0003-3783-9283</orcidid><orcidid>https://orcid.org/0000-0001-7391-0556</orcidid><orcidid>https://orcid.org/0000-0003-2061-0415</orcidid><orcidid>https://orcid.org/0000-0001-7210-3357</orcidid><orcidid>https://orcid.org/0000-0003-4414-5431</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2024-01, Vol.17 (2), p.e202300884-n/a |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_2864896654 |
source | Wiley-Blackwell Journals |
subjects | Agar aqueous electrolyte Biopolymers Clean energy Electrolytes Emissions Energy storage gel biopolymer electrolyte •, sustainable Saline water Seaweeds supercapacitor Supercapacitors Sustainable development Thermal degradation Transport properties |
title | Gel Biopolymer Electrolytes Based on Saline Water and Seaweed to Support the Large‐Scale Production of Sustainable Supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gel%20Biopolymer%20Electrolytes%20Based%20on%20Saline%20Water%20and%20Seaweed%20to%20Support%20the%20Large%E2%80%90Scale%20Production%20of%20Sustainable%20Supercapacitors&rft.jtitle=ChemSusChem&rft.au=Santa%E2%80%90Cruz,%20Larissa%20A.&rft.date=2024-01-22&rft.volume=17&rft.issue=2&rft.spage=e202300884&rft.epage=n/a&rft.pages=e202300884-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202300884&rft_dat=%3Cproquest_cross%3E2864896654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919910752&rft_id=info:pmid/37707501&rfr_iscdi=true |