Development of hydrogel‐based composite scaffolds containing eggshell particles for bone regeneration applications
This study describes the development and characterization of novel composite scaffolds, made of an alginate‐chitosan hydrogel matrix containing eggshell (ES) particles, for bone tissue engineering applications. Scaffolds with ES particles, either untreated or treated with phosphoric acid to create a...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2024-01, Vol.112 (1), p.e35296-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e35296 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 112 |
creator | Calvert, Nicholas D. Proulx, Scott Rodriguez‐Navarro, Alejandro Ahmed, Tamer Lehoux, Eric A. Hincke, Maxwell T. Catelas, Isabelle |
description | This study describes the development and characterization of novel composite scaffolds, made of an alginate‐chitosan hydrogel matrix containing eggshell (ES) particles, for bone tissue engineering applications. Scaffolds with ES particles, either untreated or treated with phosphoric acid to create a nanotextured particle surface, were compared to scaffolds without particles. Results indicate that the nanotexturing process exposed occluded ES proteins orthologous to those in human bone extracellular matrix. Scaffolds with ES or nanotextured ES (NTES) particles had a higher porosity (81 ± 4% and 89 ± 5%, respectively) than scaffolds without particles (59 ± 5%) (p = .002 and p |
doi_str_mv | 10.1002/jbm.b.35296 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2864621754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864621754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3556-6d7674004b83b84c5b1e16f2e1e415fbe82b9cfc34a30db4ea5f375b8144cbd43</originalsourceid><addsrcrecordid>eNp90btuFDEUBmALgUgIVPTIEg0S2sXX8UxJLkCiIBqoLdtzPPHKYw_2bNB2PALPyJMwySYpKFL5yPr06-j8CL2mZE0JYR82dlzbNZesa56gQyolW4mupU8fZsUP0ItaNwtuiOTP0QFXijDedYdoPoVriHkaIc04e3y160seIP79_ceaCj12eZxyDTPg6oz3OfZ1-UuzCSmkAcMw1CuIEU-mzMFFqNjngm1OgAsMkKCYOeSEzTTF4G7n-hI98yZWeHX3HqEfn86-n3xZXX77fH7y8XLluJTNqulVowQhwrbctsJJS4E2ngEFQaW30DLbOe-4MJz0VoCRnitpWyqEs73gR-jdPncq-ecW6qzHUN2yrUmQt1WzthENo0re0Lf_0U3elrRsp1lHFRVMiXZR7_fKlVxrAa-nEkZTdpoSfVOGXsrQVt-Wseg3d5lbO0L_YO-vvwC2B79ChN1jWfri-OvxPvUf_imYPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917142748</pqid></control><display><type>article</type><title>Development of hydrogel‐based composite scaffolds containing eggshell particles for bone regeneration applications</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Calvert, Nicholas D. ; Proulx, Scott ; Rodriguez‐Navarro, Alejandro ; Ahmed, Tamer ; Lehoux, Eric A. ; Hincke, Maxwell T. ; Catelas, Isabelle</creator><creatorcontrib>Calvert, Nicholas D. ; Proulx, Scott ; Rodriguez‐Navarro, Alejandro ; Ahmed, Tamer ; Lehoux, Eric A. ; Hincke, Maxwell T. ; Catelas, Isabelle</creatorcontrib><description>This study describes the development and characterization of novel composite scaffolds, made of an alginate‐chitosan hydrogel matrix containing eggshell (ES) particles, for bone tissue engineering applications. Scaffolds with ES particles, either untreated or treated with phosphoric acid to create a nanotextured particle surface, were compared to scaffolds without particles. Results indicate that the nanotexturing process exposed occluded ES proteins orthologous to those in human bone extracellular matrix. Scaffolds with ES or nanotextured ES (NTES) particles had a higher porosity (81 ± 4% and 89 ± 5%, respectively) than scaffolds without particles (59 ± 5%) (p = .002 and p < .001, respectively). Scaffolds with NTES particles had a larger median pore size (113 μm [interquartile range [IQ]: 88–140 μm]) than scaffolds with ES particles (94 μm [IQ: 75–112 μm]) and scaffolds without particles (99 μm [IQ: 74–135 μm]) (p < .001 and p = .011, respectively). The compressive modulus of the scaffolds with ES or NTES particles remained low (3.69 ± 0.70 and 3.14 ± 0.62 kPa, respectively), but these scaffolds were more resistant to deformation following maximum compression than those without particles. Finally, scaffolds with ES or NTES particles allowed better retention of human mesenchymal stem cells during seeding (53 ± 12% and 57 ± 8%, respectively, vs. 17 ± 5% for scaffolds without particles; p < .001 in both cases), as well as higher cell viability up to 21 days of culture (67 ± 17% and 61 ± 11%, respectively, vs. 15 ± 7% for scaffolds without particles; p < .001 in both cases). In addition, alkaline phosphatase (ALP) activity increased up to 558 ± 164% on day 21 in the scaffolds with ES particles, and up to 567 ± 217% on day 14 in the scaffolds with NTES particles (p = .006 and p = .002, respectively, relative to day 0). Overall, this study shows that the physicochemical properties of the alginate‐chitosan hydrogel scaffolds with ES or NTES particles are similar to those of cancellous bone. In addition, scaffolds with particles supported early osteogenic differentiation and therefore represent a promising new bone substitute, especially for non‐load bearing applications.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.35296</identifier><identifier>PMID: 37702399</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>alginate ; Alginates ; Alginic acid ; Alkaline phosphatase ; Animals ; Biomedical materials ; Bone biomaterials ; Bone growth ; Bone matrix ; Bone Regeneration ; bone substitutes ; Cancellous bone ; Cell culture ; Cell viability ; Chitosan ; Chitosan - chemistry ; Deformation resistance ; Differentiation (biology) ; Egg Shell ; Egg shells ; eggshell particles ; Extracellular matrix ; Humans ; Hydrogels ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Intelligence ; Materials research ; Materials science ; Mesenchymal stem cells ; microstructure ; Modulus of elasticity ; Osteogenesis ; Particulate composites ; Phosphoric acid ; Physicochemical properties ; Pore size ; Porosity ; Protein seeding ; Regeneration ; Regeneration (physiology) ; Scaffolds ; Stem cells ; Substitute bone ; surface modification ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2024-01, Vol.112 (1), p.e35296-n/a</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC.</rights><rights>2023 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3556-6d7674004b83b84c5b1e16f2e1e415fbe82b9cfc34a30db4ea5f375b8144cbd43</cites><orcidid>0000-0003-2674-7383 ; 0000-0001-9784-7491 ; 0000-0002-6922-6193 ; 0000-0001-6134-5668 ; 0000-0002-9356-7342 ; 0000-0002-6637-9063 ; 0009-0003-7598-5617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.35296$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.35296$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37702399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calvert, Nicholas D.</creatorcontrib><creatorcontrib>Proulx, Scott</creatorcontrib><creatorcontrib>Rodriguez‐Navarro, Alejandro</creatorcontrib><creatorcontrib>Ahmed, Tamer</creatorcontrib><creatorcontrib>Lehoux, Eric A.</creatorcontrib><creatorcontrib>Hincke, Maxwell T.</creatorcontrib><creatorcontrib>Catelas, Isabelle</creatorcontrib><title>Development of hydrogel‐based composite scaffolds containing eggshell particles for bone regeneration applications</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>This study describes the development and characterization of novel composite scaffolds, made of an alginate‐chitosan hydrogel matrix containing eggshell (ES) particles, for bone tissue engineering applications. Scaffolds with ES particles, either untreated or treated with phosphoric acid to create a nanotextured particle surface, were compared to scaffolds without particles. Results indicate that the nanotexturing process exposed occluded ES proteins orthologous to those in human bone extracellular matrix. Scaffolds with ES or nanotextured ES (NTES) particles had a higher porosity (81 ± 4% and 89 ± 5%, respectively) than scaffolds without particles (59 ± 5%) (p = .002 and p < .001, respectively). Scaffolds with NTES particles had a larger median pore size (113 μm [interquartile range [IQ]: 88–140 μm]) than scaffolds with ES particles (94 μm [IQ: 75–112 μm]) and scaffolds without particles (99 μm [IQ: 74–135 μm]) (p < .001 and p = .011, respectively). The compressive modulus of the scaffolds with ES or NTES particles remained low (3.69 ± 0.70 and 3.14 ± 0.62 kPa, respectively), but these scaffolds were more resistant to deformation following maximum compression than those without particles. Finally, scaffolds with ES or NTES particles allowed better retention of human mesenchymal stem cells during seeding (53 ± 12% and 57 ± 8%, respectively, vs. 17 ± 5% for scaffolds without particles; p < .001 in both cases), as well as higher cell viability up to 21 days of culture (67 ± 17% and 61 ± 11%, respectively, vs. 15 ± 7% for scaffolds without particles; p < .001 in both cases). In addition, alkaline phosphatase (ALP) activity increased up to 558 ± 164% on day 21 in the scaffolds with ES particles, and up to 567 ± 217% on day 14 in the scaffolds with NTES particles (p = .006 and p = .002, respectively, relative to day 0). Overall, this study shows that the physicochemical properties of the alginate‐chitosan hydrogel scaffolds with ES or NTES particles are similar to those of cancellous bone. In addition, scaffolds with particles supported early osteogenic differentiation and therefore represent a promising new bone substitute, especially for non‐load bearing applications.</description><subject>alginate</subject><subject>Alginates</subject><subject>Alginic acid</subject><subject>Alkaline phosphatase</subject><subject>Animals</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone growth</subject><subject>Bone matrix</subject><subject>Bone Regeneration</subject><subject>bone substitutes</subject><subject>Cancellous bone</subject><subject>Cell culture</subject><subject>Cell viability</subject><subject>Chitosan</subject><subject>Chitosan - chemistry</subject><subject>Deformation resistance</subject><subject>Differentiation (biology)</subject><subject>Egg Shell</subject><subject>Egg shells</subject><subject>eggshell particles</subject><subject>Extracellular matrix</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Intelligence</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Mesenchymal stem cells</subject><subject>microstructure</subject><subject>Modulus of elasticity</subject><subject>Osteogenesis</subject><subject>Particulate composites</subject><subject>Phosphoric acid</subject><subject>Physicochemical properties</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Protein seeding</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>Substitute bone</subject><subject>surface modification</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp90btuFDEUBmALgUgIVPTIEg0S2sXX8UxJLkCiIBqoLdtzPPHKYw_2bNB2PALPyJMwySYpKFL5yPr06-j8CL2mZE0JYR82dlzbNZesa56gQyolW4mupU8fZsUP0ItaNwtuiOTP0QFXijDedYdoPoVriHkaIc04e3y160seIP79_ceaCj12eZxyDTPg6oz3OfZ1-UuzCSmkAcMw1CuIEU-mzMFFqNjngm1OgAsMkKCYOeSEzTTF4G7n-hI98yZWeHX3HqEfn86-n3xZXX77fH7y8XLluJTNqulVowQhwrbctsJJS4E2ngEFQaW30DLbOe-4MJz0VoCRnitpWyqEs73gR-jdPncq-ecW6qzHUN2yrUmQt1WzthENo0re0Lf_0U3elrRsp1lHFRVMiXZR7_fKlVxrAa-nEkZTdpoSfVOGXsrQVt-Wseg3d5lbO0L_YO-vvwC2B79ChN1jWfri-OvxPvUf_imYPg</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Calvert, Nicholas D.</creator><creator>Proulx, Scott</creator><creator>Rodriguez‐Navarro, Alejandro</creator><creator>Ahmed, Tamer</creator><creator>Lehoux, Eric A.</creator><creator>Hincke, Maxwell T.</creator><creator>Catelas, Isabelle</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2674-7383</orcidid><orcidid>https://orcid.org/0000-0001-9784-7491</orcidid><orcidid>https://orcid.org/0000-0002-6922-6193</orcidid><orcidid>https://orcid.org/0000-0001-6134-5668</orcidid><orcidid>https://orcid.org/0000-0002-9356-7342</orcidid><orcidid>https://orcid.org/0000-0002-6637-9063</orcidid><orcidid>https://orcid.org/0009-0003-7598-5617</orcidid></search><sort><creationdate>202401</creationdate><title>Development of hydrogel‐based composite scaffolds containing eggshell particles for bone regeneration applications</title><author>Calvert, Nicholas D. ; Proulx, Scott ; Rodriguez‐Navarro, Alejandro ; Ahmed, Tamer ; Lehoux, Eric A. ; Hincke, Maxwell T. ; Catelas, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3556-6d7674004b83b84c5b1e16f2e1e415fbe82b9cfc34a30db4ea5f375b8144cbd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alginate</topic><topic>Alginates</topic><topic>Alginic acid</topic><topic>Alkaline phosphatase</topic><topic>Animals</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone growth</topic><topic>Bone matrix</topic><topic>Bone Regeneration</topic><topic>bone substitutes</topic><topic>Cancellous bone</topic><topic>Cell culture</topic><topic>Cell viability</topic><topic>Chitosan</topic><topic>Chitosan - chemistry</topic><topic>Deformation resistance</topic><topic>Differentiation (biology)</topic><topic>Egg Shell</topic><topic>Egg shells</topic><topic>eggshell particles</topic><topic>Extracellular matrix</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Intelligence</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Mesenchymal stem cells</topic><topic>microstructure</topic><topic>Modulus of elasticity</topic><topic>Osteogenesis</topic><topic>Particulate composites</topic><topic>Phosphoric acid</topic><topic>Physicochemical properties</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Protein seeding</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>Substitute bone</topic><topic>surface modification</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvert, Nicholas D.</creatorcontrib><creatorcontrib>Proulx, Scott</creatorcontrib><creatorcontrib>Rodriguez‐Navarro, Alejandro</creatorcontrib><creatorcontrib>Ahmed, Tamer</creatorcontrib><creatorcontrib>Lehoux, Eric A.</creatorcontrib><creatorcontrib>Hincke, Maxwell T.</creatorcontrib><creatorcontrib>Catelas, Isabelle</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvert, Nicholas D.</au><au>Proulx, Scott</au><au>Rodriguez‐Navarro, Alejandro</au><au>Ahmed, Tamer</au><au>Lehoux, Eric A.</au><au>Hincke, Maxwell T.</au><au>Catelas, Isabelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of hydrogel‐based composite scaffolds containing eggshell particles for bone regeneration applications</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2024-01</date><risdate>2024</risdate><volume>112</volume><issue>1</issue><spage>e35296</spage><epage>n/a</epage><pages>e35296-n/a</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>This study describes the development and characterization of novel composite scaffolds, made of an alginate‐chitosan hydrogel matrix containing eggshell (ES) particles, for bone tissue engineering applications. Scaffolds with ES particles, either untreated or treated with phosphoric acid to create a nanotextured particle surface, were compared to scaffolds without particles. Results indicate that the nanotexturing process exposed occluded ES proteins orthologous to those in human bone extracellular matrix. Scaffolds with ES or nanotextured ES (NTES) particles had a higher porosity (81 ± 4% and 89 ± 5%, respectively) than scaffolds without particles (59 ± 5%) (p = .002 and p < .001, respectively). Scaffolds with NTES particles had a larger median pore size (113 μm [interquartile range [IQ]: 88–140 μm]) than scaffolds with ES particles (94 μm [IQ: 75–112 μm]) and scaffolds without particles (99 μm [IQ: 74–135 μm]) (p < .001 and p = .011, respectively). The compressive modulus of the scaffolds with ES or NTES particles remained low (3.69 ± 0.70 and 3.14 ± 0.62 kPa, respectively), but these scaffolds were more resistant to deformation following maximum compression than those without particles. Finally, scaffolds with ES or NTES particles allowed better retention of human mesenchymal stem cells during seeding (53 ± 12% and 57 ± 8%, respectively, vs. 17 ± 5% for scaffolds without particles; p < .001 in both cases), as well as higher cell viability up to 21 days of culture (67 ± 17% and 61 ± 11%, respectively, vs. 15 ± 7% for scaffolds without particles; p < .001 in both cases). In addition, alkaline phosphatase (ALP) activity increased up to 558 ± 164% on day 21 in the scaffolds with ES particles, and up to 567 ± 217% on day 14 in the scaffolds with NTES particles (p = .006 and p = .002, respectively, relative to day 0). Overall, this study shows that the physicochemical properties of the alginate‐chitosan hydrogel scaffolds with ES or NTES particles are similar to those of cancellous bone. In addition, scaffolds with particles supported early osteogenic differentiation and therefore represent a promising new bone substitute, especially for non‐load bearing applications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>37702399</pmid><doi>10.1002/jbm.b.35296</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2674-7383</orcidid><orcidid>https://orcid.org/0000-0001-9784-7491</orcidid><orcidid>https://orcid.org/0000-0002-6922-6193</orcidid><orcidid>https://orcid.org/0000-0001-6134-5668</orcidid><orcidid>https://orcid.org/0000-0002-9356-7342</orcidid><orcidid>https://orcid.org/0000-0002-6637-9063</orcidid><orcidid>https://orcid.org/0009-0003-7598-5617</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2024-01, Vol.112 (1), p.e35296-n/a |
issn | 1552-4973 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_2864621754 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | alginate Alginates Alginic acid Alkaline phosphatase Animals Biomedical materials Bone biomaterials Bone growth Bone matrix Bone Regeneration bone substitutes Cancellous bone Cell culture Cell viability Chitosan Chitosan - chemistry Deformation resistance Differentiation (biology) Egg Shell Egg shells eggshell particles Extracellular matrix Humans Hydrogels Hydrogels - chemistry Hydrogels - pharmacology Intelligence Materials research Materials science Mesenchymal stem cells microstructure Modulus of elasticity Osteogenesis Particulate composites Phosphoric acid Physicochemical properties Pore size Porosity Protein seeding Regeneration Regeneration (physiology) Scaffolds Stem cells Substitute bone surface modification Tissue engineering Tissue Engineering - methods Tissue Scaffolds - chemistry |
title | Development of hydrogel‐based composite scaffolds containing eggshell particles for bone regeneration applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20hydrogel%E2%80%90based%20composite%20scaffolds%20containing%20eggshell%20particles%20for%20bone%20regeneration%20applications&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Calvert,%20Nicholas%20D.&rft.date=2024-01&rft.volume=112&rft.issue=1&rft.spage=e35296&rft.epage=n/a&rft.pages=e35296-n/a&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.35296&rft_dat=%3Cproquest_cross%3E2864621754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917142748&rft_id=info:pmid/37702399&rfr_iscdi=true |