Synthesis of time-optimal control by time interval adjustment

An iterative procedure for time-optimal control of linear plants with constrained control amplitudes is presented. It is assumed that the n th-order state-equation coefficient matrix has real eigenvalues, so that the time-optimal control is of the known bang-bang form with n switchings. The first st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1969-12, Vol.14 (6), p.707-710
1. Verfasser: Yastreboff, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 710
container_issue 6
container_start_page 707
container_title IEEE transactions on automatic control
container_volume 14
creator Yastreboff, M.
description An iterative procedure for time-optimal control of linear plants with constrained control amplitudes is presented. It is assumed that the n th-order state-equation coefficient matrix has real eigenvalues, so that the time-optimal control is of the known bang-bang form with n switchings. The first step in the procedure is to arbitrarily choose n switching times (including the final time), and to calculate a precise constant control function which although not necessarily satisfying the amplitude constraints does bring the plant to the desired terminal state. In the following steps the switching times are systematically adjusted until the control function closely approximates the bang-bang form. The procedure is simple to implement, and experiments have shown fast convergence.
doi_str_mv 10.1109/TAC.1969.1099307
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28643071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1099307</ieee_id><sourcerecordid>28643071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-160e1df0bae4fb0e202d12ec792f4283fd3e662a5f30ca084af1ae0eebf7900e3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEuVjR2LJxJZyZyduPDBUFV9SJQbKbDnJWaRK42K7SP3vcUkHNqbTu_feSfdj7AZhigjqfjVfTFFJNU1CCZidsAmWZZXzkotTNgHAKle8kufsIoR1krIocMIe3vdD_KTQhczZLHYbyt02DdNnjRuid31W73_3WTdE8t_JMO16F-KGhnjFzqzpA10f5yX7eHpcLV7y5dvz62K-zBvBRcxRAmFroTZU2BqIA2-RUzNT3Ba8ErYVJCU3pRXQGKgKY9EQENV2pgBIXLK78e7Wu68dhag3XWio781Abhc0V1CWAOr_YCWLBAdTEMZg410Inqze-vS132sEfQCqE1B9AKqPQFPldqx0RPQnPro_bX9yFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28643071</pqid></control><display><type>article</type><title>Synthesis of time-optimal control by time interval adjustment</title><source>IEEE Electronic Library (IEL)</source><creator>Yastreboff, M.</creator><creatorcontrib>Yastreboff, M.</creatorcontrib><description>An iterative procedure for time-optimal control of linear plants with constrained control amplitudes is presented. It is assumed that the n th-order state-equation coefficient matrix has real eigenvalues, so that the time-optimal control is of the known bang-bang form with n switchings. The first step in the procedure is to arbitrarily choose n switching times (including the final time), and to calculate a precise constant control function which although not necessarily satisfying the amplitude constraints does bring the plant to the desired terminal state. In the following steps the switching times are systematically adjusted until the control function closely approximates the bang-bang form. The procedure is simple to implement, and experiments have shown fast convergence.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1969.1099307</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Bang-bang control ; Control system synthesis ; Control systems ; Controllability ; Convergence ; Eigenvalues and eigenfunctions ; Error correction ; MIMO ; Optimal control</subject><ispartof>IEEE transactions on automatic control, 1969-12, Vol.14 (6), p.707-710</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-160e1df0bae4fb0e202d12ec792f4283fd3e662a5f30ca084af1ae0eebf7900e3</citedby><cites>FETCH-LOGICAL-c323t-160e1df0bae4fb0e202d12ec792f4283fd3e662a5f30ca084af1ae0eebf7900e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1099307$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1099307$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yastreboff, M.</creatorcontrib><title>Synthesis of time-optimal control by time interval adjustment</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>An iterative procedure for time-optimal control of linear plants with constrained control amplitudes is presented. It is assumed that the n th-order state-equation coefficient matrix has real eigenvalues, so that the time-optimal control is of the known bang-bang form with n switchings. The first step in the procedure is to arbitrarily choose n switching times (including the final time), and to calculate a precise constant control function which although not necessarily satisfying the amplitude constraints does bring the plant to the desired terminal state. In the following steps the switching times are systematically adjusted until the control function closely approximates the bang-bang form. The procedure is simple to implement, and experiments have shown fast convergence.</description><subject>Automatic control</subject><subject>Bang-bang control</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Controllability</subject><subject>Convergence</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Error correction</subject><subject>MIMO</subject><subject>Optimal control</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1969</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEuVjR2LJxJZyZyduPDBUFV9SJQbKbDnJWaRK42K7SP3vcUkHNqbTu_feSfdj7AZhigjqfjVfTFFJNU1CCZidsAmWZZXzkotTNgHAKle8kufsIoR1krIocMIe3vdD_KTQhczZLHYbyt02DdNnjRuid31W73_3WTdE8t_JMO16F-KGhnjFzqzpA10f5yX7eHpcLV7y5dvz62K-zBvBRcxRAmFroTZU2BqIA2-RUzNT3Ba8ErYVJCU3pRXQGKgKY9EQENV2pgBIXLK78e7Wu68dhag3XWio781Abhc0V1CWAOr_YCWLBAdTEMZg410Inqze-vS132sEfQCqE1B9AKqPQFPldqx0RPQnPro_bX9yFg</recordid><startdate>19691201</startdate><enddate>19691201</enddate><creator>Yastreboff, M.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19691201</creationdate><title>Synthesis of time-optimal control by time interval adjustment</title><author>Yastreboff, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-160e1df0bae4fb0e202d12ec792f4283fd3e662a5f30ca084af1ae0eebf7900e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1969</creationdate><topic>Automatic control</topic><topic>Bang-bang control</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Controllability</topic><topic>Convergence</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Error correction</topic><topic>MIMO</topic><topic>Optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yastreboff, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yastreboff, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of time-optimal control by time interval adjustment</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1969-12-01</date><risdate>1969</risdate><volume>14</volume><issue>6</issue><spage>707</spage><epage>710</epage><pages>707-710</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>An iterative procedure for time-optimal control of linear plants with constrained control amplitudes is presented. It is assumed that the n th-order state-equation coefficient matrix has real eigenvalues, so that the time-optimal control is of the known bang-bang form with n switchings. The first step in the procedure is to arbitrarily choose n switching times (including the final time), and to calculate a precise constant control function which although not necessarily satisfying the amplitude constraints does bring the plant to the desired terminal state. In the following steps the switching times are systematically adjusted until the control function closely approximates the bang-bang form. The procedure is simple to implement, and experiments have shown fast convergence.</abstract><pub>IEEE</pub><doi>10.1109/TAC.1969.1099307</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1969-12, Vol.14 (6), p.707-710
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_28643071
source IEEE Electronic Library (IEL)
subjects Automatic control
Bang-bang control
Control system synthesis
Control systems
Controllability
Convergence
Eigenvalues and eigenfunctions
Error correction
MIMO
Optimal control
title Synthesis of time-optimal control by time interval adjustment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20time-optimal%20control%20by%20time%20interval%20adjustment&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Yastreboff,%20M.&rft.date=1969-12-01&rft.volume=14&rft.issue=6&rft.spage=707&rft.epage=710&rft.pages=707-710&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1969.1099307&rft_dat=%3Cproquest_RIE%3E28643071%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28643071&rft_id=info:pmid/&rft_ieee_id=1099307&rfr_iscdi=true