Vortex Structures in Exponentially Shaped Josephson Junctions

We report the numerical calculations of the static vortex structure and critical curves in exponentially shaped long Josephson junctions for in-line and overlap geometries. Stability of the static solutions is investigated by checking the sign of the smallest eigenvalue of the associated Sturm-Liouv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low temperature physics 2005-04, Vol.139 (1), p.299-307
Hauptverfasser: Shukrinov, Yu. M., Semerdjieva, E. G., Boyadjiev, T. L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 1
container_start_page 299
container_title Journal of low temperature physics
container_volume 139
creator Shukrinov, Yu. M.
Semerdjieva, E. G.
Boyadjiev, T. L.
description We report the numerical calculations of the static vortex structure and critical curves in exponentially shaped long Josephson junctions for in-line and overlap geometries. Stability of the static solutions is investigated by checking the sign of the smallest eigenvalue of the associated Sturm-Liouville problem. The change in the junction width leads to the renormalization of the magnetic flux in comparison with the case of a linear one-dimensional model. We study the influence of the model's parameters, and particularly, the shape parameter on the stability of the states of the magnetic flux. We compare the vortex structure and critical curves for the in-line and overlap geometries. Our numerically constructed critical curve of the Josephson junction matches well with the experimental one.
doi_str_mv 10.1007/s10909-005-3933-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28642687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28642687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-2cf1da3baa1d43eb2648c3b1dfe66873a46b4377e98acf68fb1f68a20e008bb3</originalsourceid><addsrcrecordid>eNot0DFPwzAUBGALgUQp_AC2TGyGZzu1nYEBVaVQVWJoxWrZzosalMbBdqT239OqLHfL6YaPkEcGzwxAvSQGFVQUYEZFJQSFKzJhMyWoEjN1TSYAnFPOK3ZL7lL6AYBKSzEhr98hZjwUmxxHn8eIqWj7YnEYQo99bm3XHYvNzg5YF6uQcNil0Bersfe5DX26JzeN7RI-_PeUbN8X2_kHXX8tP-dva-q5kply37DaCmctq0uBjstSe-FY3aCUWglbSlcKpbDS1jdSN46d0nJAAO2cmJKny-0Qw--IKZt9mzx2ne0xjMlwLUt-PpoSdhn6GFKK2Jghtnsbj4aBOTuZi5M5OZmzkwHxB8uuXFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28642687</pqid></control><display><type>article</type><title>Vortex Structures in Exponentially Shaped Josephson Junctions</title><source>SpringerLink Journals</source><creator>Shukrinov, Yu. M. ; Semerdjieva, E. G. ; Boyadjiev, T. L.</creator><creatorcontrib>Shukrinov, Yu. M. ; Semerdjieva, E. G. ; Boyadjiev, T. L.</creatorcontrib><description>We report the numerical calculations of the static vortex structure and critical curves in exponentially shaped long Josephson junctions for in-line and overlap geometries. Stability of the static solutions is investigated by checking the sign of the smallest eigenvalue of the associated Sturm-Liouville problem. The change in the junction width leads to the renormalization of the magnetic flux in comparison with the case of a linear one-dimensional model. We study the influence of the model's parameters, and particularly, the shape parameter on the stability of the states of the magnetic flux. We compare the vortex structure and critical curves for the in-line and overlap geometries. Our numerically constructed critical curve of the Josephson junction matches well with the experimental one.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-005-3933-0</identifier><language>eng</language><ispartof>Journal of low temperature physics, 2005-04, Vol.139 (1), p.299-307</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-2cf1da3baa1d43eb2648c3b1dfe66873a46b4377e98acf68fb1f68a20e008bb3</citedby><cites>FETCH-LOGICAL-c276t-2cf1da3baa1d43eb2648c3b1dfe66873a46b4377e98acf68fb1f68a20e008bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shukrinov, Yu. M.</creatorcontrib><creatorcontrib>Semerdjieva, E. G.</creatorcontrib><creatorcontrib>Boyadjiev, T. L.</creatorcontrib><title>Vortex Structures in Exponentially Shaped Josephson Junctions</title><title>Journal of low temperature physics</title><description>We report the numerical calculations of the static vortex structure and critical curves in exponentially shaped long Josephson junctions for in-line and overlap geometries. Stability of the static solutions is investigated by checking the sign of the smallest eigenvalue of the associated Sturm-Liouville problem. The change in the junction width leads to the renormalization of the magnetic flux in comparison with the case of a linear one-dimensional model. We study the influence of the model's parameters, and particularly, the shape parameter on the stability of the states of the magnetic flux. We compare the vortex structure and critical curves for the in-line and overlap geometries. Our numerically constructed critical curve of the Josephson junction matches well with the experimental one.</description><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNot0DFPwzAUBGALgUQp_AC2TGyGZzu1nYEBVaVQVWJoxWrZzosalMbBdqT239OqLHfL6YaPkEcGzwxAvSQGFVQUYEZFJQSFKzJhMyWoEjN1TSYAnFPOK3ZL7lL6AYBKSzEhr98hZjwUmxxHn8eIqWj7YnEYQo99bm3XHYvNzg5YF6uQcNil0Bersfe5DX26JzeN7RI-_PeUbN8X2_kHXX8tP-dva-q5kply37DaCmctq0uBjstSe-FY3aCUWglbSlcKpbDS1jdSN46d0nJAAO2cmJKny-0Qw--IKZt9mzx2ne0xjMlwLUt-PpoSdhn6GFKK2Jghtnsbj4aBOTuZi5M5OZmzkwHxB8uuXFg</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Shukrinov, Yu. M.</creator><creator>Semerdjieva, E. G.</creator><creator>Boyadjiev, T. L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20050401</creationdate><title>Vortex Structures in Exponentially Shaped Josephson Junctions</title><author>Shukrinov, Yu. M. ; Semerdjieva, E. G. ; Boyadjiev, T. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-2cf1da3baa1d43eb2648c3b1dfe66873a46b4377e98acf68fb1f68a20e008bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shukrinov, Yu. M.</creatorcontrib><creatorcontrib>Semerdjieva, E. G.</creatorcontrib><creatorcontrib>Boyadjiev, T. L.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shukrinov, Yu. M.</au><au>Semerdjieva, E. G.</au><au>Boyadjiev, T. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex Structures in Exponentially Shaped Josephson Junctions</atitle><jtitle>Journal of low temperature physics</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>139</volume><issue>1</issue><spage>299</spage><epage>307</epage><pages>299-307</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We report the numerical calculations of the static vortex structure and critical curves in exponentially shaped long Josephson junctions for in-line and overlap geometries. Stability of the static solutions is investigated by checking the sign of the smallest eigenvalue of the associated Sturm-Liouville problem. The change in the junction width leads to the renormalization of the magnetic flux in comparison with the case of a linear one-dimensional model. We study the influence of the model's parameters, and particularly, the shape parameter on the stability of the states of the magnetic flux. We compare the vortex structure and critical curves for the in-line and overlap geometries. Our numerically constructed critical curve of the Josephson junction matches well with the experimental one.</abstract><doi>10.1007/s10909-005-3933-0</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2005-04, Vol.139 (1), p.299-307
issn 0022-2291
1573-7357
language eng
recordid cdi_proquest_miscellaneous_28642687
source SpringerLink Journals
title Vortex Structures in Exponentially Shaped Josephson Junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20Structures%20in%20Exponentially%20Shaped%20Josephson%20Junctions&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Shukrinov,%20Yu.%20M.&rft.date=2005-04-01&rft.volume=139&rft.issue=1&rft.spage=299&rft.epage=307&rft.pages=299-307&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-005-3933-0&rft_dat=%3Cproquest_cross%3E28642687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28642687&rft_id=info:pmid/&rfr_iscdi=true