Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061

Thermo-mechanical simulation of friction stir welding can predict the transient temperature field, active stresses developed, forces in all the three dimensions and may be extended to determine the residual stress. The thermal stresses constitute a major portion of the total stress developed during...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine tools & manufacture 2005-11, Vol.45 (14), p.1577-1587
Hauptverfasser: Soundararajan, Vijay, Zekovic, Srdja, Kovacevic, Radovan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1587
container_issue 14
container_start_page 1577
container_title International journal of machine tools & manufacture
container_volume 45
creator Soundararajan, Vijay
Zekovic, Srdja
Kovacevic, Radovan
description Thermo-mechanical simulation of friction stir welding can predict the transient temperature field, active stresses developed, forces in all the three dimensions and may be extended to determine the residual stress. The thermal stresses constitute a major portion of the total stress developed during the process. Boundary conditions in the thermal modeling of process play a vital role in the final temperature profile. The heating and cooling rates with the peak temperature attained by the workpiece determine the thermal stress. Also, predicting realistic peak temperature becomes important as the operating temperature at the interface of tool-workpiece is very close to the solidus temperature of the aluminum workpiece. The convection heat-transfer coefficients of the surfaces exposed to air can be theoretically determined using Newton's law of cooling. Contact conductance depends on the pressure at the interface and has a non-uniform variation. The actual pressure distribution along the interface is dependent on the thermal stress from local temperature and non-linear stress–strain state. Therefore, applying an adaptive contact conductance can make the model more robust for process parameter variations. A finite element thermo-mechanical model with mechanical tool loading was developed considering a uniform value for contact conductance and used for predicting the stress at the workpiece and backplate interface. This pressure distribution contours are used for defining the non-uniform adaptive contact conductance used in the thermal model for predicting the thermal history in the workpiece. The thermo-mechanical model was then used in predict stress development in friction stir welding.
doi_str_mv 10.1016/j.ijmachtools.2005.02.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28642601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890695505000672</els_id><sourcerecordid>28642601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-5e622153f39154e65c1e287b84e2f070ef3cf9596988f4b42ee3f141d06603083</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOD7-Q1zorvUmbdJkKYMvENzo1pBJb5wMbTMmHcV_b8cRdOnqcuHjHM5HyBmDkgGTl6syrHrrlmOMXS45gCiBlwBqj8yYanTBWQP7ZAZKQyG1EIfkKOcVADBVsRl5eVpi6mPRo1vaITjb0T622NGPMC6pbe16DO9IF3EztDZ9UheHNowhDpn6mKhPwW0_mseQ6Ad2bRheafT0qqMSJDshB952GU9_7jF5vrl-mt8VD4-39_Orh8JVio-FQMk5E5WvNBM1SuEYctUsVI3cQwPoK-e10FIr5etFzRErz2rWgpRQgaqOycUud53i2wbzaPqQHXadHTBusuFK1lwCm0C9A12KOSf0Zp1CPy0zDMzWqFmZP0bN1qgBbuC75PynxOZJlE92cCH_BjRMiQb0xM13HE6L3wMmk13AwWEbErrRtDH8o-0LCemR5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28642601</pqid></control><display><type>article</type><title>Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061</title><source>Elsevier ScienceDirect Journals</source><creator>Soundararajan, Vijay ; Zekovic, Srdja ; Kovacevic, Radovan</creator><creatorcontrib>Soundararajan, Vijay ; Zekovic, Srdja ; Kovacevic, Radovan</creatorcontrib><description>Thermo-mechanical simulation of friction stir welding can predict the transient temperature field, active stresses developed, forces in all the three dimensions and may be extended to determine the residual stress. The thermal stresses constitute a major portion of the total stress developed during the process. Boundary conditions in the thermal modeling of process play a vital role in the final temperature profile. The heating and cooling rates with the peak temperature attained by the workpiece determine the thermal stress. Also, predicting realistic peak temperature becomes important as the operating temperature at the interface of tool-workpiece is very close to the solidus temperature of the aluminum workpiece. The convection heat-transfer coefficients of the surfaces exposed to air can be theoretically determined using Newton's law of cooling. Contact conductance depends on the pressure at the interface and has a non-uniform variation. The actual pressure distribution along the interface is dependent on the thermal stress from local temperature and non-linear stress–strain state. Therefore, applying an adaptive contact conductance can make the model more robust for process parameter variations. A finite element thermo-mechanical model with mechanical tool loading was developed considering a uniform value for contact conductance and used for predicting the stress at the workpiece and backplate interface. This pressure distribution contours are used for defining the non-uniform adaptive contact conductance used in the thermal model for predicting the thermal history in the workpiece. The thermo-mechanical model was then used in predict stress development in friction stir welding.</description><identifier>ISSN: 0890-6955</identifier><identifier>EISSN: 1879-2170</identifier><identifier>DOI: 10.1016/j.ijmachtools.2005.02.008</identifier><identifier>CODEN: IMTME3</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminum alloys ; Analytical and numerical techniques ; Applied sciences ; Contact conductance ; Exact sciences and technology ; Finite element analysis ; Friction stir welding ; Fundamental areas of phenomenology (including applications) ; Heat transfer ; Mechanical engineering. Machine design ; Physics ; Thermal modeling</subject><ispartof>International journal of machine tools &amp; manufacture, 2005-11, Vol.45 (14), p.1577-1587</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-5e622153f39154e65c1e287b84e2f070ef3cf9596988f4b42ee3f141d06603083</citedby><cites>FETCH-LOGICAL-c382t-5e622153f39154e65c1e287b84e2f070ef3cf9596988f4b42ee3f141d06603083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0890695505000672$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17185709$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Soundararajan, Vijay</creatorcontrib><creatorcontrib>Zekovic, Srdja</creatorcontrib><creatorcontrib>Kovacevic, Radovan</creatorcontrib><title>Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061</title><title>International journal of machine tools &amp; manufacture</title><description>Thermo-mechanical simulation of friction stir welding can predict the transient temperature field, active stresses developed, forces in all the three dimensions and may be extended to determine the residual stress. The thermal stresses constitute a major portion of the total stress developed during the process. Boundary conditions in the thermal modeling of process play a vital role in the final temperature profile. The heating and cooling rates with the peak temperature attained by the workpiece determine the thermal stress. Also, predicting realistic peak temperature becomes important as the operating temperature at the interface of tool-workpiece is very close to the solidus temperature of the aluminum workpiece. The convection heat-transfer coefficients of the surfaces exposed to air can be theoretically determined using Newton's law of cooling. Contact conductance depends on the pressure at the interface and has a non-uniform variation. The actual pressure distribution along the interface is dependent on the thermal stress from local temperature and non-linear stress–strain state. Therefore, applying an adaptive contact conductance can make the model more robust for process parameter variations. A finite element thermo-mechanical model with mechanical tool loading was developed considering a uniform value for contact conductance and used for predicting the stress at the workpiece and backplate interface. This pressure distribution contours are used for defining the non-uniform adaptive contact conductance used in the thermal model for predicting the thermal history in the workpiece. The thermo-mechanical model was then used in predict stress development in friction stir welding.</description><subject>Aluminum alloys</subject><subject>Analytical and numerical techniques</subject><subject>Applied sciences</subject><subject>Contact conductance</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Friction stir welding</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer</subject><subject>Mechanical engineering. Machine design</subject><subject>Physics</subject><subject>Thermal modeling</subject><issn>0890-6955</issn><issn>1879-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAUhYMoOD7-Q1zorvUmbdJkKYMvENzo1pBJb5wMbTMmHcV_b8cRdOnqcuHjHM5HyBmDkgGTl6syrHrrlmOMXS45gCiBlwBqj8yYanTBWQP7ZAZKQyG1EIfkKOcVADBVsRl5eVpi6mPRo1vaITjb0T622NGPMC6pbe16DO9IF3EztDZ9UheHNowhDpn6mKhPwW0_mseQ6Ad2bRheafT0qqMSJDshB952GU9_7jF5vrl-mt8VD4-39_Orh8JVio-FQMk5E5WvNBM1SuEYctUsVI3cQwPoK-e10FIr5etFzRErz2rWgpRQgaqOycUud53i2wbzaPqQHXadHTBusuFK1lwCm0C9A12KOSf0Zp1CPy0zDMzWqFmZP0bN1qgBbuC75PynxOZJlE92cCH_BjRMiQb0xM13HE6L3wMmk13AwWEbErrRtDH8o-0LCemR5g</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Soundararajan, Vijay</creator><creator>Zekovic, Srdja</creator><creator>Kovacevic, Radovan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20051101</creationdate><title>Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061</title><author>Soundararajan, Vijay ; Zekovic, Srdja ; Kovacevic, Radovan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-5e622153f39154e65c1e287b84e2f070ef3cf9596988f4b42ee3f141d06603083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aluminum alloys</topic><topic>Analytical and numerical techniques</topic><topic>Applied sciences</topic><topic>Contact conductance</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Friction stir welding</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer</topic><topic>Mechanical engineering. Machine design</topic><topic>Physics</topic><topic>Thermal modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soundararajan, Vijay</creatorcontrib><creatorcontrib>Zekovic, Srdja</creatorcontrib><creatorcontrib>Kovacevic, Radovan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of machine tools &amp; manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soundararajan, Vijay</au><au>Zekovic, Srdja</au><au>Kovacevic, Radovan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061</atitle><jtitle>International journal of machine tools &amp; manufacture</jtitle><date>2005-11-01</date><risdate>2005</risdate><volume>45</volume><issue>14</issue><spage>1577</spage><epage>1587</epage><pages>1577-1587</pages><issn>0890-6955</issn><eissn>1879-2170</eissn><coden>IMTME3</coden><abstract>Thermo-mechanical simulation of friction stir welding can predict the transient temperature field, active stresses developed, forces in all the three dimensions and may be extended to determine the residual stress. The thermal stresses constitute a major portion of the total stress developed during the process. Boundary conditions in the thermal modeling of process play a vital role in the final temperature profile. The heating and cooling rates with the peak temperature attained by the workpiece determine the thermal stress. Also, predicting realistic peak temperature becomes important as the operating temperature at the interface of tool-workpiece is very close to the solidus temperature of the aluminum workpiece. The convection heat-transfer coefficients of the surfaces exposed to air can be theoretically determined using Newton's law of cooling. Contact conductance depends on the pressure at the interface and has a non-uniform variation. The actual pressure distribution along the interface is dependent on the thermal stress from local temperature and non-linear stress–strain state. Therefore, applying an adaptive contact conductance can make the model more robust for process parameter variations. A finite element thermo-mechanical model with mechanical tool loading was developed considering a uniform value for contact conductance and used for predicting the stress at the workpiece and backplate interface. This pressure distribution contours are used for defining the non-uniform adaptive contact conductance used in the thermal model for predicting the thermal history in the workpiece. The thermo-mechanical model was then used in predict stress development in friction stir welding.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmachtools.2005.02.008</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0890-6955
ispartof International journal of machine tools & manufacture, 2005-11, Vol.45 (14), p.1577-1587
issn 0890-6955
1879-2170
language eng
recordid cdi_proquest_miscellaneous_28642601
source Elsevier ScienceDirect Journals
subjects Aluminum alloys
Analytical and numerical techniques
Applied sciences
Contact conductance
Exact sciences and technology
Finite element analysis
Friction stir welding
Fundamental areas of phenomenology (including applications)
Heat transfer
Mechanical engineering. Machine design
Physics
Thermal modeling
title Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-mechanical%20model%20with%20adaptive%20boundary%20conditions%20for%20friction%20stir%20welding%20of%20Al%206061&rft.jtitle=International%20journal%20of%20machine%20tools%20&%20manufacture&rft.au=Soundararajan,%20Vijay&rft.date=2005-11-01&rft.volume=45&rft.issue=14&rft.spage=1577&rft.epage=1587&rft.pages=1577-1587&rft.issn=0890-6955&rft.eissn=1879-2170&rft.coden=IMTME3&rft_id=info:doi/10.1016/j.ijmachtools.2005.02.008&rft_dat=%3Cproquest_cross%3E28642601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28642601&rft_id=info:pmid/&rft_els_id=S0890695505000672&rfr_iscdi=true