Prospects of spectroscopic neutron imaging: optimizing experimental setups in battery electrolyte research

Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes. However, their application is constrained by sample geometry, setup parameters, and material chemistries, especially when studying physico-chemical changes i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-09, Vol.25 (36), p.24993-257
Hauptverfasser: Carreón Ruiz, E. Ricardo, Stalder, Natalie, Lee, Jongmin, Gubler, Lorenz, Boillat, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue 36
container_start_page 24993
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Carreón Ruiz, E. Ricardo
Stalder, Natalie
Lee, Jongmin
Gubler, Lorenz
Boillat, Pierre
description Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes. However, their application is constrained by sample geometry, setup parameters, and material chemistries, especially when studying physico-chemical changes in battery electrolytes. To address these limitations, we present a framework for simulating and optimizing the investigation of hydrogenous materials. Our approach combines quantitative modeling with experimental data to predict and optimize the contrast achievable in wavelength-resolved neutron imaging methods, thereby maximizing the information obtained in specific neutron imaging setups. While initially demonstrated at the BOA beamline of the Paul Scherrer Institute, this framework is applicable to any continuous source with spectral neutron imaging capabilities with a chopper disk. This work establishes a pathway for accurate studies of hydrogenous materials and their physico-chemical behavior, paving the way for advancements in the field of material characterization with wavelength-resolved neutron imaging. Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes.
doi_str_mv 10.1039/d3cp03434h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2864155781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864155781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-461d7d1129d49a91ca515dd4a1523fa367369371e38fea030efd4b0aa25526de3</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxRdRsFYv3oWAFxFWk50ku-tN6icU7EHPS5rMtlv2yyQL1r_etJUKnubN8OMx8yaKzhm9YRTyWwO6p8CBLw-iEeMS4pxm_HCvU3kcnTi3opQywWAUrWa2cz1q70hXkq0KA931lSYtDqFpSdWoRdUu7kjX-6qpvoMm-NWjrRpsvaqJQz_0jlQtmSvv0a4J1lujeu2RWHSorF6eRkelqh2e_dZx9PH0-D55iadvz6-T-2mskxR8zCUzqWEsyQ3PVc60EkwYwxUTCZQKZAoyh5QhZCUqChRLw-dUqUSIRBqEcXS18-1t9zmg80VTOY11rVrsBlckmeRMiDRjAb38h666wbZhuw0lIQtRikBd7ygdonEWy6IPpyu7LhgtNrEXDzCZbWN_CfDFDrZO77m_t8APYQKAyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866383435</pqid></control><display><type>article</type><title>Prospects of spectroscopic neutron imaging: optimizing experimental setups in battery electrolyte research</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Carreón Ruiz, E. Ricardo ; Stalder, Natalie ; Lee, Jongmin ; Gubler, Lorenz ; Boillat, Pierre</creator><creatorcontrib>Carreón Ruiz, E. Ricardo ; Stalder, Natalie ; Lee, Jongmin ; Gubler, Lorenz ; Boillat, Pierre</creatorcontrib><description>Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes. However, their application is constrained by sample geometry, setup parameters, and material chemistries, especially when studying physico-chemical changes in battery electrolytes. To address these limitations, we present a framework for simulating and optimizing the investigation of hydrogenous materials. Our approach combines quantitative modeling with experimental data to predict and optimize the contrast achievable in wavelength-resolved neutron imaging methods, thereby maximizing the information obtained in specific neutron imaging setups. While initially demonstrated at the BOA beamline of the Paul Scherrer Institute, this framework is applicable to any continuous source with spectral neutron imaging capabilities with a chopper disk. This work establishes a pathway for accurate studies of hydrogenous materials and their physico-chemical behavior, paving the way for advancements in the field of material characterization with wavelength-resolved neutron imaging. Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp03434h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Electrolytes ; Imaging ; Optimization</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-09, Vol.25 (36), p.24993-257</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-461d7d1129d49a91ca515dd4a1523fa367369371e38fea030efd4b0aa25526de3</cites><orcidid>0000-0001-9527-2890 ; 0000-0002-8338-6994 ; 0000-0002-5683-8086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Carreón Ruiz, E. Ricardo</creatorcontrib><creatorcontrib>Stalder, Natalie</creatorcontrib><creatorcontrib>Lee, Jongmin</creatorcontrib><creatorcontrib>Gubler, Lorenz</creatorcontrib><creatorcontrib>Boillat, Pierre</creatorcontrib><title>Prospects of spectroscopic neutron imaging: optimizing experimental setups in battery electrolyte research</title><title>Physical chemistry chemical physics : PCCP</title><description>Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes. However, their application is constrained by sample geometry, setup parameters, and material chemistries, especially when studying physico-chemical changes in battery electrolytes. To address these limitations, we present a framework for simulating and optimizing the investigation of hydrogenous materials. Our approach combines quantitative modeling with experimental data to predict and optimize the contrast achievable in wavelength-resolved neutron imaging methods, thereby maximizing the information obtained in specific neutron imaging setups. While initially demonstrated at the BOA beamline of the Paul Scherrer Institute, this framework is applicable to any continuous source with spectral neutron imaging capabilities with a chopper disk. This work establishes a pathway for accurate studies of hydrogenous materials and their physico-chemical behavior, paving the way for advancements in the field of material characterization with wavelength-resolved neutron imaging. Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes.</description><subject>Batteries</subject><subject>Electrolytes</subject><subject>Imaging</subject><subject>Optimization</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LAzEQxRdRsFYv3oWAFxFWk50ku-tN6icU7EHPS5rMtlv2yyQL1r_etJUKnubN8OMx8yaKzhm9YRTyWwO6p8CBLw-iEeMS4pxm_HCvU3kcnTi3opQywWAUrWa2cz1q70hXkq0KA931lSYtDqFpSdWoRdUu7kjX-6qpvoMm-NWjrRpsvaqJQz_0jlQtmSvv0a4J1lujeu2RWHSorF6eRkelqh2e_dZx9PH0-D55iadvz6-T-2mskxR8zCUzqWEsyQ3PVc60EkwYwxUTCZQKZAoyh5QhZCUqChRLw-dUqUSIRBqEcXS18-1t9zmg80VTOY11rVrsBlckmeRMiDRjAb38h666wbZhuw0lIQtRikBd7ygdonEWy6IPpyu7LhgtNrEXDzCZbWN_CfDFDrZO77m_t8APYQKAyw</recordid><startdate>20230920</startdate><enddate>20230920</enddate><creator>Carreón Ruiz, E. Ricardo</creator><creator>Stalder, Natalie</creator><creator>Lee, Jongmin</creator><creator>Gubler, Lorenz</creator><creator>Boillat, Pierre</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9527-2890</orcidid><orcidid>https://orcid.org/0000-0002-8338-6994</orcidid><orcidid>https://orcid.org/0000-0002-5683-8086</orcidid></search><sort><creationdate>20230920</creationdate><title>Prospects of spectroscopic neutron imaging: optimizing experimental setups in battery electrolyte research</title><author>Carreón Ruiz, E. Ricardo ; Stalder, Natalie ; Lee, Jongmin ; Gubler, Lorenz ; Boillat, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-461d7d1129d49a91ca515dd4a1523fa367369371e38fea030efd4b0aa25526de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Electrolytes</topic><topic>Imaging</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carreón Ruiz, E. Ricardo</creatorcontrib><creatorcontrib>Stalder, Natalie</creatorcontrib><creatorcontrib>Lee, Jongmin</creatorcontrib><creatorcontrib>Gubler, Lorenz</creatorcontrib><creatorcontrib>Boillat, Pierre</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carreón Ruiz, E. Ricardo</au><au>Stalder, Natalie</au><au>Lee, Jongmin</au><au>Gubler, Lorenz</au><au>Boillat, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prospects of spectroscopic neutron imaging: optimizing experimental setups in battery electrolyte research</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-09-20</date><risdate>2023</risdate><volume>25</volume><issue>36</issue><spage>24993</spage><epage>257</epage><pages>24993-257</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes. However, their application is constrained by sample geometry, setup parameters, and material chemistries, especially when studying physico-chemical changes in battery electrolytes. To address these limitations, we present a framework for simulating and optimizing the investigation of hydrogenous materials. Our approach combines quantitative modeling with experimental data to predict and optimize the contrast achievable in wavelength-resolved neutron imaging methods, thereby maximizing the information obtained in specific neutron imaging setups. While initially demonstrated at the BOA beamline of the Paul Scherrer Institute, this framework is applicable to any continuous source with spectral neutron imaging capabilities with a chopper disk. This work establishes a pathway for accurate studies of hydrogenous materials and their physico-chemical behavior, paving the way for advancements in the field of material characterization with wavelength-resolved neutron imaging. Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp03434h</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9527-2890</orcidid><orcidid>https://orcid.org/0000-0002-8338-6994</orcidid><orcidid>https://orcid.org/0000-0002-5683-8086</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-09, Vol.25 (36), p.24993-257
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2864155781
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Batteries
Electrolytes
Imaging
Optimization
title Prospects of spectroscopic neutron imaging: optimizing experimental setups in battery electrolyte research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prospects%20of%20spectroscopic%20neutron%20imaging:%20optimizing%20experimental%20setups%20in%20battery%20electrolyte%20research&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Carre%C3%B3n%20Ruiz,%20E.%20Ricardo&rft.date=2023-09-20&rft.volume=25&rft.issue=36&rft.spage=24993&rft.epage=257&rft.pages=24993-257&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp03434h&rft_dat=%3Cproquest_cross%3E2864155781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866383435&rft_id=info:pmid/&rfr_iscdi=true