Prospects of spectroscopic neutron imaging: optimizing experimental setups in battery electrolyte research
Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes. However, their application is constrained by sample geometry, setup parameters, and material chemistries, especially when studying physico-chemical changes i...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-09, Vol.25 (36), p.24993-257 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257 |
---|---|
container_issue | 36 |
container_start_page | 24993 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Carreón Ruiz, E. Ricardo Stalder, Natalie Lee, Jongmin Gubler, Lorenz Boillat, Pierre |
description | Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes. However, their application is constrained by sample geometry, setup parameters, and material chemistries, especially when studying physico-chemical changes in battery electrolytes. To address these limitations, we present a framework for simulating and optimizing the investigation of hydrogenous materials. Our approach combines quantitative modeling with experimental data to predict and optimize the contrast achievable in wavelength-resolved neutron imaging methods, thereby maximizing the information obtained in specific neutron imaging setups. While initially demonstrated at the BOA beamline of the Paul Scherrer Institute, this framework is applicable to any continuous source with spectral neutron imaging capabilities with a chopper disk. This work establishes a pathway for accurate studies of hydrogenous materials and their physico-chemical behavior, paving the way for advancements in the field of material characterization with wavelength-resolved neutron imaging.
Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes. |
doi_str_mv | 10.1039/d3cp03434h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2864155781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864155781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-461d7d1129d49a91ca515dd4a1523fa367369371e38fea030efd4b0aa25526de3</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxRdRsFYv3oWAFxFWk50ku-tN6icU7EHPS5rMtlv2yyQL1r_etJUKnubN8OMx8yaKzhm9YRTyWwO6p8CBLw-iEeMS4pxm_HCvU3kcnTi3opQywWAUrWa2cz1q70hXkq0KA931lSYtDqFpSdWoRdUu7kjX-6qpvoMm-NWjrRpsvaqJQz_0jlQtmSvv0a4J1lujeu2RWHSorF6eRkelqh2e_dZx9PH0-D55iadvz6-T-2mskxR8zCUzqWEsyQ3PVc60EkwYwxUTCZQKZAoyh5QhZCUqChRLw-dUqUSIRBqEcXS18-1t9zmg80VTOY11rVrsBlckmeRMiDRjAb38h666wbZhuw0lIQtRikBd7ygdonEWy6IPpyu7LhgtNrEXDzCZbWN_CfDFDrZO77m_t8APYQKAyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866383435</pqid></control><display><type>article</type><title>Prospects of spectroscopic neutron imaging: optimizing experimental setups in battery electrolyte research</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Carreón Ruiz, E. Ricardo ; Stalder, Natalie ; Lee, Jongmin ; Gubler, Lorenz ; Boillat, Pierre</creator><creatorcontrib>Carreón Ruiz, E. Ricardo ; Stalder, Natalie ; Lee, Jongmin ; Gubler, Lorenz ; Boillat, Pierre</creatorcontrib><description>Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes. However, their application is constrained by sample geometry, setup parameters, and material chemistries, especially when studying physico-chemical changes in battery electrolytes. To address these limitations, we present a framework for simulating and optimizing the investigation of hydrogenous materials. Our approach combines quantitative modeling with experimental data to predict and optimize the contrast achievable in wavelength-resolved neutron imaging methods, thereby maximizing the information obtained in specific neutron imaging setups. While initially demonstrated at the BOA beamline of the Paul Scherrer Institute, this framework is applicable to any continuous source with spectral neutron imaging capabilities with a chopper disk. This work establishes a pathway for accurate studies of hydrogenous materials and their physico-chemical behavior, paving the way for advancements in the field of material characterization with wavelength-resolved neutron imaging.
Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp03434h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Electrolytes ; Imaging ; Optimization</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-09, Vol.25 (36), p.24993-257</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-461d7d1129d49a91ca515dd4a1523fa367369371e38fea030efd4b0aa25526de3</cites><orcidid>0000-0001-9527-2890 ; 0000-0002-8338-6994 ; 0000-0002-5683-8086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Carreón Ruiz, E. Ricardo</creatorcontrib><creatorcontrib>Stalder, Natalie</creatorcontrib><creatorcontrib>Lee, Jongmin</creatorcontrib><creatorcontrib>Gubler, Lorenz</creatorcontrib><creatorcontrib>Boillat, Pierre</creatorcontrib><title>Prospects of spectroscopic neutron imaging: optimizing experimental setups in battery electrolyte research</title><title>Physical chemistry chemical physics : PCCP</title><description>Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes. However, their application is constrained by sample geometry, setup parameters, and material chemistries, especially when studying physico-chemical changes in battery electrolytes. To address these limitations, we present a framework for simulating and optimizing the investigation of hydrogenous materials. Our approach combines quantitative modeling with experimental data to predict and optimize the contrast achievable in wavelength-resolved neutron imaging methods, thereby maximizing the information obtained in specific neutron imaging setups. While initially demonstrated at the BOA beamline of the Paul Scherrer Institute, this framework is applicable to any continuous source with spectral neutron imaging capabilities with a chopper disk. This work establishes a pathway for accurate studies of hydrogenous materials and their physico-chemical behavior, paving the way for advancements in the field of material characterization with wavelength-resolved neutron imaging.
Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes.</description><subject>Batteries</subject><subject>Electrolytes</subject><subject>Imaging</subject><subject>Optimization</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LAzEQxRdRsFYv3oWAFxFWk50ku-tN6icU7EHPS5rMtlv2yyQL1r_etJUKnubN8OMx8yaKzhm9YRTyWwO6p8CBLw-iEeMS4pxm_HCvU3kcnTi3opQywWAUrWa2cz1q70hXkq0KA931lSYtDqFpSdWoRdUu7kjX-6qpvoMm-NWjrRpsvaqJQz_0jlQtmSvv0a4J1lujeu2RWHSorF6eRkelqh2e_dZx9PH0-D55iadvz6-T-2mskxR8zCUzqWEsyQ3PVc60EkwYwxUTCZQKZAoyh5QhZCUqChRLw-dUqUSIRBqEcXS18-1t9zmg80VTOY11rVrsBlckmeRMiDRjAb38h666wbZhuw0lIQtRikBd7ygdonEWy6IPpyu7LhgtNrEXDzCZbWN_CfDFDrZO77m_t8APYQKAyw</recordid><startdate>20230920</startdate><enddate>20230920</enddate><creator>Carreón Ruiz, E. Ricardo</creator><creator>Stalder, Natalie</creator><creator>Lee, Jongmin</creator><creator>Gubler, Lorenz</creator><creator>Boillat, Pierre</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9527-2890</orcidid><orcidid>https://orcid.org/0000-0002-8338-6994</orcidid><orcidid>https://orcid.org/0000-0002-5683-8086</orcidid></search><sort><creationdate>20230920</creationdate><title>Prospects of spectroscopic neutron imaging: optimizing experimental setups in battery electrolyte research</title><author>Carreón Ruiz, E. Ricardo ; Stalder, Natalie ; Lee, Jongmin ; Gubler, Lorenz ; Boillat, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-461d7d1129d49a91ca515dd4a1523fa367369371e38fea030efd4b0aa25526de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Electrolytes</topic><topic>Imaging</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carreón Ruiz, E. Ricardo</creatorcontrib><creatorcontrib>Stalder, Natalie</creatorcontrib><creatorcontrib>Lee, Jongmin</creatorcontrib><creatorcontrib>Gubler, Lorenz</creatorcontrib><creatorcontrib>Boillat, Pierre</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carreón Ruiz, E. Ricardo</au><au>Stalder, Natalie</au><au>Lee, Jongmin</au><au>Gubler, Lorenz</au><au>Boillat, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prospects of spectroscopic neutron imaging: optimizing experimental setups in battery electrolyte research</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-09-20</date><risdate>2023</risdate><volume>25</volume><issue>36</issue><spage>24993</spage><epage>257</epage><pages>24993-257</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes. However, their application is constrained by sample geometry, setup parameters, and material chemistries, especially when studying physico-chemical changes in battery electrolytes. To address these limitations, we present a framework for simulating and optimizing the investigation of hydrogenous materials. Our approach combines quantitative modeling with experimental data to predict and optimize the contrast achievable in wavelength-resolved neutron imaging methods, thereby maximizing the information obtained in specific neutron imaging setups. While initially demonstrated at the BOA beamline of the Paul Scherrer Institute, this framework is applicable to any continuous source with spectral neutron imaging capabilities with a chopper disk. This work establishes a pathway for accurate studies of hydrogenous materials and their physico-chemical behavior, paving the way for advancements in the field of material characterization with wavelength-resolved neutron imaging.
Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp03434h</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9527-2890</orcidid><orcidid>https://orcid.org/0000-0002-8338-6994</orcidid><orcidid>https://orcid.org/0000-0002-5683-8086</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-09, Vol.25 (36), p.24993-257 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2864155781 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Batteries Electrolytes Imaging Optimization |
title | Prospects of spectroscopic neutron imaging: optimizing experimental setups in battery electrolyte research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prospects%20of%20spectroscopic%20neutron%20imaging:%20optimizing%20experimental%20setups%20in%20battery%20electrolyte%20research&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Carre%C3%B3n%20Ruiz,%20E.%20Ricardo&rft.date=2023-09-20&rft.volume=25&rft.issue=36&rft.spage=24993&rft.epage=257&rft.pages=24993-257&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp03434h&rft_dat=%3Cproquest_cross%3E2864155781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866383435&rft_id=info:pmid/&rfr_iscdi=true |