Mechanism of CO2 Reduction to Methanol with H2 on an Iron(II)‐scorpionate Catalyst

CO2 utilization is an important process in the chemical industry with great environmental power. In this work we show how CO2 and H2 can be reacted to form methanol on an iron(II) center and highlight the bottlenecks for the reaction and what structural features of the catalyst are essential for eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2023-11, Vol.29 (63), p.e202302832-e202302832
Hauptverfasser: Zhu, Chengxu, D'Agostino, Carmine, de Visser, Sam P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e202302832
container_issue 63
container_start_page e202302832
container_title Chemistry : a European journal
container_volume 29
creator Zhu, Chengxu
D'Agostino, Carmine
de Visser, Sam P
description CO2 utilization is an important process in the chemical industry with great environmental power. In this work we show how CO2 and H2 can be reacted to form methanol on an iron(II) center and highlight the bottlenecks for the reaction and what structural features of the catalyst are essential for efficient turnover. The calculations predict the reactions to proceed through three successive reaction cycles that start with heterolytic cleavage of H2 followed by sequential hydride and proton transfer processes. The H2 splitting process is an endergonic process and hence high pressures will be needed to overcome this step and trigger the hydrogenation reaction. Moreover, H2 cleavage into a hydride and proton requires a metal to bind hydride and a nearby source to bind the proton, such as an amide or pyrazolyl group, which the scorpionate ligand used here facilitates. As such the computations highlight the non‐innocence of the ligand scaffold through proton shuttle from H2 to substrate as an important step in the reaction mechanism.
doi_str_mv 10.1002/chem.202302832
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2863768203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889580559</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-3dda48599036c4a5a59a794ed573efbe20d3d5a572ee74008020767964842563</originalsourceid><addsrcrecordid>eNpdj81Kw0AUhQdRsFa3rgfc1EXqzZ3M31KCP4GWgnRfxuSWpqSZmpkg7nwEn9EncUBXrg6c83E4h7HrHOY5AN7VOzrMEVAAGoEnbJJLzDOhlTxlE7CFzpQU9pxdhLAHAKuEmLD1kuqd69tw4H7LyxXyF2rGOra-59HzJcWU-o6_t3HHn5En2_W8Gnw_q6rb78-vUPvhmGgXiZcuuu4jxEt2tnVdoKs_nbL148O6fM4Wq6eqvF9kR5QqZqJpXGGktSBUXTjppHXaFtRILWj7SgiNaJKrkUgXAAYQtNJWFaZIBWLKZr-1x8G_jRTi5tCGmrrO9eTHsEGj0nuDIBJ68w_d-3Ho07hEGSsNSGnFDwFhXpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889580559</pqid></control><display><type>article</type><title>Mechanism of CO2 Reduction to Methanol with H2 on an Iron(II)‐scorpionate Catalyst</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, Chengxu ; D'Agostino, Carmine ; de Visser, Sam P</creator><creatorcontrib>Zhu, Chengxu ; D'Agostino, Carmine ; de Visser, Sam P</creatorcontrib><description>CO2 utilization is an important process in the chemical industry with great environmental power. In this work we show how CO2 and H2 can be reacted to form methanol on an iron(II) center and highlight the bottlenecks for the reaction and what structural features of the catalyst are essential for efficient turnover. The calculations predict the reactions to proceed through three successive reaction cycles that start with heterolytic cleavage of H2 followed by sequential hydride and proton transfer processes. The H2 splitting process is an endergonic process and hence high pressures will be needed to overcome this step and trigger the hydrogenation reaction. Moreover, H2 cleavage into a hydride and proton requires a metal to bind hydride and a nearby source to bind the proton, such as an amide or pyrazolyl group, which the scorpionate ligand used here facilitates. As such the computations highlight the non‐innocence of the ligand scaffold through proton shuttle from H2 to substrate as an important step in the reaction mechanism.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202302832</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalysts ; Chemical industry ; Chemistry ; Cleavage ; Hydrides ; Iron ; Ligands ; Methanol ; Protons ; Reaction mechanisms ; Substrates</subject><ispartof>Chemistry : a European journal, 2023-11, Vol.29 (63), p.e202302832-e202302832</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Chengxu</creatorcontrib><creatorcontrib>D'Agostino, Carmine</creatorcontrib><creatorcontrib>de Visser, Sam P</creatorcontrib><title>Mechanism of CO2 Reduction to Methanol with H2 on an Iron(II)‐scorpionate Catalyst</title><title>Chemistry : a European journal</title><description>CO2 utilization is an important process in the chemical industry with great environmental power. In this work we show how CO2 and H2 can be reacted to form methanol on an iron(II) center and highlight the bottlenecks for the reaction and what structural features of the catalyst are essential for efficient turnover. The calculations predict the reactions to proceed through three successive reaction cycles that start with heterolytic cleavage of H2 followed by sequential hydride and proton transfer processes. The H2 splitting process is an endergonic process and hence high pressures will be needed to overcome this step and trigger the hydrogenation reaction. Moreover, H2 cleavage into a hydride and proton requires a metal to bind hydride and a nearby source to bind the proton, such as an amide or pyrazolyl group, which the scorpionate ligand used here facilitates. As such the computations highlight the non‐innocence of the ligand scaffold through proton shuttle from H2 to substrate as an important step in the reaction mechanism.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical industry</subject><subject>Chemistry</subject><subject>Cleavage</subject><subject>Hydrides</subject><subject>Iron</subject><subject>Ligands</subject><subject>Methanol</subject><subject>Protons</subject><subject>Reaction mechanisms</subject><subject>Substrates</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdj81Kw0AUhQdRsFa3rgfc1EXqzZ3M31KCP4GWgnRfxuSWpqSZmpkg7nwEn9EncUBXrg6c83E4h7HrHOY5AN7VOzrMEVAAGoEnbJJLzDOhlTxlE7CFzpQU9pxdhLAHAKuEmLD1kuqd69tw4H7LyxXyF2rGOra-59HzJcWU-o6_t3HHn5En2_W8Gnw_q6rb78-vUPvhmGgXiZcuuu4jxEt2tnVdoKs_nbL148O6fM4Wq6eqvF9kR5QqZqJpXGGktSBUXTjppHXaFtRILWj7SgiNaJKrkUgXAAYQtNJWFaZIBWLKZr-1x8G_jRTi5tCGmrrO9eTHsEGj0nuDIBJ68w_d-3Ho07hEGSsNSGnFDwFhXpU</recordid><startdate>20231113</startdate><enddate>20231113</enddate><creator>Zhu, Chengxu</creator><creator>D'Agostino, Carmine</creator><creator>de Visser, Sam P</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20231113</creationdate><title>Mechanism of CO2 Reduction to Methanol with H2 on an Iron(II)‐scorpionate Catalyst</title><author>Zhu, Chengxu ; D'Agostino, Carmine ; de Visser, Sam P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-3dda48599036c4a5a59a794ed573efbe20d3d5a572ee74008020767964842563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical industry</topic><topic>Chemistry</topic><topic>Cleavage</topic><topic>Hydrides</topic><topic>Iron</topic><topic>Ligands</topic><topic>Methanol</topic><topic>Protons</topic><topic>Reaction mechanisms</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chengxu</creatorcontrib><creatorcontrib>D'Agostino, Carmine</creatorcontrib><creatorcontrib>de Visser, Sam P</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chengxu</au><au>D'Agostino, Carmine</au><au>de Visser, Sam P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of CO2 Reduction to Methanol with H2 on an Iron(II)‐scorpionate Catalyst</atitle><jtitle>Chemistry : a European journal</jtitle><date>2023-11-13</date><risdate>2023</risdate><volume>29</volume><issue>63</issue><spage>e202302832</spage><epage>e202302832</epage><pages>e202302832-e202302832</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>CO2 utilization is an important process in the chemical industry with great environmental power. In this work we show how CO2 and H2 can be reacted to form methanol on an iron(II) center and highlight the bottlenecks for the reaction and what structural features of the catalyst are essential for efficient turnover. The calculations predict the reactions to proceed through three successive reaction cycles that start with heterolytic cleavage of H2 followed by sequential hydride and proton transfer processes. The H2 splitting process is an endergonic process and hence high pressures will be needed to overcome this step and trigger the hydrogenation reaction. Moreover, H2 cleavage into a hydride and proton requires a metal to bind hydride and a nearby source to bind the proton, such as an amide or pyrazolyl group, which the scorpionate ligand used here facilitates. As such the computations highlight the non‐innocence of the ligand scaffold through proton shuttle from H2 to substrate as an important step in the reaction mechanism.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.202302832</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2023-11, Vol.29 (63), p.e202302832-e202302832
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2863768203
source Wiley Online Library Journals Frontfile Complete
subjects Carbon dioxide
Catalysts
Chemical industry
Chemistry
Cleavage
Hydrides
Iron
Ligands
Methanol
Protons
Reaction mechanisms
Substrates
title Mechanism of CO2 Reduction to Methanol with H2 on an Iron(II)‐scorpionate Catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20CO2%20Reduction%20to%20Methanol%20with%20H2%20on%20an%20Iron(II)%E2%80%90scorpionate%20Catalyst&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Zhu,%20Chengxu&rft.date=2023-11-13&rft.volume=29&rft.issue=63&rft.spage=e202302832&rft.epage=e202302832&rft.pages=e202302832-e202302832&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202302832&rft_dat=%3Cproquest%3E2889580559%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889580559&rft_id=info:pmid/&rfr_iscdi=true