Topological optimization of networks: A nonlinear mixed integer model employing generalized Benders decomposition
A class of network topological optimization problems is formulated as a nonlinear mixed integer programming model, which can be used to design transportation and computer communication networks subject to a budget constraint. The approach proposed for selecting an optimal network consists of separat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1982-02, Vol.27 (1), p.164-169 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 169 |
---|---|
container_issue | 1 |
container_start_page | 164 |
container_title | IEEE transactions on automatic control |
container_volume | 27 |
creator | Hoang Hoc |
description | A class of network topological optimization problems is formulated as a nonlinear mixed integer programming model, which can be used to design transportation and computer communication networks subject to a budget constraint. The approach proposed for selecting an optimal network consists of separating the continuous part of the model from the discrete part by generalized Benders decomposition. One then solves a sequence of master and subproblems. The subproblems of the minimal convex cost multicommodity flow type are used to generate cutting planes for choosing potential topologies by means of the master problems. Computational techniques suited to solving the master and subproblems are suggested, and very encouraging experimental results are reported. |
doi_str_mv | 10.1109/TAC.1982.1102873 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28634126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1102873</ieee_id><sourcerecordid>29074921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-16b5ad3e3ad6bd10a069fba80d213ba8d3828212153cfb0e2753d3dbe4d686773</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EEqWwI7F4YkvxI3EctlLxkiqxlDly4pvI4NipHQTtrydRKzEyXR3d75zlQ-iakgWlpLjbLFcLWkg2JSZzfoJmNMtkwjLGT9GMECqTgklxji5i_BijSFM6Q9uN7731ramVxb4fTGf2ajDeYd9gB8O3D5_xHi-x884aByrgzvyAxsYN0MKYvAaLoeut3xnX4hYcBGXNfmQewGkIEWuofdf7aKbhS3TWKBvh6njn6P3pcbN6SdZvz6-r5TqpGZdDQkWVKc2BKy0qTYkiomgqJYlmlI9Xc8kko4xmvG4qAizPuOa6glQLKfKcz9HtYbcPfvsFcSg7E2uwVjnwX7FkBcnTYhz7F5SCp5SJESQHsA4-xgBN2QfTqbArKSknCeUooZwklEcJY-XmUDEA8Icfv78v_IVq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28634126</pqid></control><display><type>article</type><title>Topological optimization of networks: A nonlinear mixed integer model employing generalized Benders decomposition</title><source>IEEE Electronic Library (IEL)</source><creator>Hoang Hoc</creator><creatorcontrib>Hoang Hoc</creatorcontrib><description>A class of network topological optimization problems is formulated as a nonlinear mixed integer programming model, which can be used to design transportation and computer communication networks subject to a budget constraint. The approach proposed for selecting an optimal network consists of separating the continuous part of the model from the discrete part by generalized Benders decomposition. One then solves a sequence of master and subproblems. The subproblems of the minimal convex cost multicommodity flow type are used to generate cutting planes for choosing potential topologies by means of the master problems. Computational techniques suited to solving the master and subproblems are suggested, and very encouraging experimental results are reported.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1982.1102873</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communication system control ; Distributed control ; Eigenvalues and eigenfunctions ; Frequency control ; Interconnected systems ; Large-scale systems ; Matrix decomposition ; Routing ; State feedback ; Sufficient conditions</subject><ispartof>IEEE transactions on automatic control, 1982-02, Vol.27 (1), p.164-169</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c238t-16b5ad3e3ad6bd10a069fba80d213ba8d3828212153cfb0e2753d3dbe4d686773</citedby><cites>FETCH-LOGICAL-c238t-16b5ad3e3ad6bd10a069fba80d213ba8d3828212153cfb0e2753d3dbe4d686773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1102873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1102873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoang Hoc</creatorcontrib><title>Topological optimization of networks: A nonlinear mixed integer model employing generalized Benders decomposition</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A class of network topological optimization problems is formulated as a nonlinear mixed integer programming model, which can be used to design transportation and computer communication networks subject to a budget constraint. The approach proposed for selecting an optimal network consists of separating the continuous part of the model from the discrete part by generalized Benders decomposition. One then solves a sequence of master and subproblems. The subproblems of the minimal convex cost multicommodity flow type are used to generate cutting planes for choosing potential topologies by means of the master problems. Computational techniques suited to solving the master and subproblems are suggested, and very encouraging experimental results are reported.</description><subject>Communication system control</subject><subject>Distributed control</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Frequency control</subject><subject>Interconnected systems</subject><subject>Large-scale systems</subject><subject>Matrix decomposition</subject><subject>Routing</subject><subject>State feedback</subject><subject>Sufficient conditions</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAUhS0EEqWwI7F4YkvxI3EctlLxkiqxlDly4pvI4NipHQTtrydRKzEyXR3d75zlQ-iakgWlpLjbLFcLWkg2JSZzfoJmNMtkwjLGT9GMECqTgklxji5i_BijSFM6Q9uN7731ramVxb4fTGf2ajDeYd9gB8O3D5_xHi-x884aByrgzvyAxsYN0MKYvAaLoeut3xnX4hYcBGXNfmQewGkIEWuofdf7aKbhS3TWKBvh6njn6P3pcbN6SdZvz6-r5TqpGZdDQkWVKc2BKy0qTYkiomgqJYlmlI9Xc8kko4xmvG4qAizPuOa6glQLKfKcz9HtYbcPfvsFcSg7E2uwVjnwX7FkBcnTYhz7F5SCp5SJESQHsA4-xgBN2QfTqbArKSknCeUooZwklEcJY-XmUDEA8Icfv78v_IVq</recordid><startdate>19820201</startdate><enddate>19820201</enddate><creator>Hoang Hoc</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19820201</creationdate><title>Topological optimization of networks: A nonlinear mixed integer model employing generalized Benders decomposition</title><author>Hoang Hoc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-16b5ad3e3ad6bd10a069fba80d213ba8d3828212153cfb0e2753d3dbe4d686773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Communication system control</topic><topic>Distributed control</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Frequency control</topic><topic>Interconnected systems</topic><topic>Large-scale systems</topic><topic>Matrix decomposition</topic><topic>Routing</topic><topic>State feedback</topic><topic>Sufficient conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoang Hoc</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoang Hoc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological optimization of networks: A nonlinear mixed integer model employing generalized Benders decomposition</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1982-02-01</date><risdate>1982</risdate><volume>27</volume><issue>1</issue><spage>164</spage><epage>169</epage><pages>164-169</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A class of network topological optimization problems is formulated as a nonlinear mixed integer programming model, which can be used to design transportation and computer communication networks subject to a budget constraint. The approach proposed for selecting an optimal network consists of separating the continuous part of the model from the discrete part by generalized Benders decomposition. One then solves a sequence of master and subproblems. The subproblems of the minimal convex cost multicommodity flow type are used to generate cutting planes for choosing potential topologies by means of the master problems. Computational techniques suited to solving the master and subproblems are suggested, and very encouraging experimental results are reported.</abstract><pub>IEEE</pub><doi>10.1109/TAC.1982.1102873</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1982-02, Vol.27 (1), p.164-169 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_28634126 |
source | IEEE Electronic Library (IEL) |
subjects | Communication system control Distributed control Eigenvalues and eigenfunctions Frequency control Interconnected systems Large-scale systems Matrix decomposition Routing State feedback Sufficient conditions |
title | Topological optimization of networks: A nonlinear mixed integer model employing generalized Benders decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20optimization%20of%20networks:%20A%20nonlinear%20mixed%20integer%20model%20employing%20generalized%20Benders%20decomposition&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Hoang%20Hoc&rft.date=1982-02-01&rft.volume=27&rft.issue=1&rft.spage=164&rft.epage=169&rft.pages=164-169&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1982.1102873&rft_dat=%3Cproquest_RIE%3E29074921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28634126&rft_id=info:pmid/&rft_ieee_id=1102873&rfr_iscdi=true |