Topological optimization of networks: A nonlinear mixed integer model employing generalized Benders decomposition

A class of network topological optimization problems is formulated as a nonlinear mixed integer programming model, which can be used to design transportation and computer communication networks subject to a budget constraint. The approach proposed for selecting an optimal network consists of separat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1982-02, Vol.27 (1), p.164-169
1. Verfasser: Hoang Hoc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169
container_issue 1
container_start_page 164
container_title IEEE transactions on automatic control
container_volume 27
creator Hoang Hoc
description A class of network topological optimization problems is formulated as a nonlinear mixed integer programming model, which can be used to design transportation and computer communication networks subject to a budget constraint. The approach proposed for selecting an optimal network consists of separating the continuous part of the model from the discrete part by generalized Benders decomposition. One then solves a sequence of master and subproblems. The subproblems of the minimal convex cost multicommodity flow type are used to generate cutting planes for choosing potential topologies by means of the master problems. Computational techniques suited to solving the master and subproblems are suggested, and very encouraging experimental results are reported.
doi_str_mv 10.1109/TAC.1982.1102873
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28634126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1102873</ieee_id><sourcerecordid>29074921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-16b5ad3e3ad6bd10a069fba80d213ba8d3828212153cfb0e2753d3dbe4d686773</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EEqWwI7F4YkvxI3EctlLxkiqxlDly4pvI4NipHQTtrydRKzEyXR3d75zlQ-iakgWlpLjbLFcLWkg2JSZzfoJmNMtkwjLGT9GMECqTgklxji5i_BijSFM6Q9uN7731ramVxb4fTGf2ajDeYd9gB8O3D5_xHi-x884aByrgzvyAxsYN0MKYvAaLoeut3xnX4hYcBGXNfmQewGkIEWuofdf7aKbhS3TWKBvh6njn6P3pcbN6SdZvz6-r5TqpGZdDQkWVKc2BKy0qTYkiomgqJYlmlI9Xc8kko4xmvG4qAizPuOa6glQLKfKcz9HtYbcPfvsFcSg7E2uwVjnwX7FkBcnTYhz7F5SCp5SJESQHsA4-xgBN2QfTqbArKSknCeUooZwklEcJY-XmUDEA8Icfv78v_IVq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28634126</pqid></control><display><type>article</type><title>Topological optimization of networks: A nonlinear mixed integer model employing generalized Benders decomposition</title><source>IEEE Electronic Library (IEL)</source><creator>Hoang Hoc</creator><creatorcontrib>Hoang Hoc</creatorcontrib><description>A class of network topological optimization problems is formulated as a nonlinear mixed integer programming model, which can be used to design transportation and computer communication networks subject to a budget constraint. The approach proposed for selecting an optimal network consists of separating the continuous part of the model from the discrete part by generalized Benders decomposition. One then solves a sequence of master and subproblems. The subproblems of the minimal convex cost multicommodity flow type are used to generate cutting planes for choosing potential topologies by means of the master problems. Computational techniques suited to solving the master and subproblems are suggested, and very encouraging experimental results are reported.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1982.1102873</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communication system control ; Distributed control ; Eigenvalues and eigenfunctions ; Frequency control ; Interconnected systems ; Large-scale systems ; Matrix decomposition ; Routing ; State feedback ; Sufficient conditions</subject><ispartof>IEEE transactions on automatic control, 1982-02, Vol.27 (1), p.164-169</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c238t-16b5ad3e3ad6bd10a069fba80d213ba8d3828212153cfb0e2753d3dbe4d686773</citedby><cites>FETCH-LOGICAL-c238t-16b5ad3e3ad6bd10a069fba80d213ba8d3828212153cfb0e2753d3dbe4d686773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1102873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1102873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoang Hoc</creatorcontrib><title>Topological optimization of networks: A nonlinear mixed integer model employing generalized Benders decomposition</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A class of network topological optimization problems is formulated as a nonlinear mixed integer programming model, which can be used to design transportation and computer communication networks subject to a budget constraint. The approach proposed for selecting an optimal network consists of separating the continuous part of the model from the discrete part by generalized Benders decomposition. One then solves a sequence of master and subproblems. The subproblems of the minimal convex cost multicommodity flow type are used to generate cutting planes for choosing potential topologies by means of the master problems. Computational techniques suited to solving the master and subproblems are suggested, and very encouraging experimental results are reported.</description><subject>Communication system control</subject><subject>Distributed control</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Frequency control</subject><subject>Interconnected systems</subject><subject>Large-scale systems</subject><subject>Matrix decomposition</subject><subject>Routing</subject><subject>State feedback</subject><subject>Sufficient conditions</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAUhS0EEqWwI7F4YkvxI3EctlLxkiqxlDly4pvI4NipHQTtrydRKzEyXR3d75zlQ-iakgWlpLjbLFcLWkg2JSZzfoJmNMtkwjLGT9GMECqTgklxji5i_BijSFM6Q9uN7731ramVxb4fTGf2ajDeYd9gB8O3D5_xHi-x884aByrgzvyAxsYN0MKYvAaLoeut3xnX4hYcBGXNfmQewGkIEWuofdf7aKbhS3TWKBvh6njn6P3pcbN6SdZvz6-r5TqpGZdDQkWVKc2BKy0qTYkiomgqJYlmlI9Xc8kko4xmvG4qAizPuOa6glQLKfKcz9HtYbcPfvsFcSg7E2uwVjnwX7FkBcnTYhz7F5SCp5SJESQHsA4-xgBN2QfTqbArKSknCeUooZwklEcJY-XmUDEA8Icfv78v_IVq</recordid><startdate>19820201</startdate><enddate>19820201</enddate><creator>Hoang Hoc</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19820201</creationdate><title>Topological optimization of networks: A nonlinear mixed integer model employing generalized Benders decomposition</title><author>Hoang Hoc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-16b5ad3e3ad6bd10a069fba80d213ba8d3828212153cfb0e2753d3dbe4d686773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Communication system control</topic><topic>Distributed control</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Frequency control</topic><topic>Interconnected systems</topic><topic>Large-scale systems</topic><topic>Matrix decomposition</topic><topic>Routing</topic><topic>State feedback</topic><topic>Sufficient conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoang Hoc</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoang Hoc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological optimization of networks: A nonlinear mixed integer model employing generalized Benders decomposition</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1982-02-01</date><risdate>1982</risdate><volume>27</volume><issue>1</issue><spage>164</spage><epage>169</epage><pages>164-169</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A class of network topological optimization problems is formulated as a nonlinear mixed integer programming model, which can be used to design transportation and computer communication networks subject to a budget constraint. The approach proposed for selecting an optimal network consists of separating the continuous part of the model from the discrete part by generalized Benders decomposition. One then solves a sequence of master and subproblems. The subproblems of the minimal convex cost multicommodity flow type are used to generate cutting planes for choosing potential topologies by means of the master problems. Computational techniques suited to solving the master and subproblems are suggested, and very encouraging experimental results are reported.</abstract><pub>IEEE</pub><doi>10.1109/TAC.1982.1102873</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1982-02, Vol.27 (1), p.164-169
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_28634126
source IEEE Electronic Library (IEL)
subjects Communication system control
Distributed control
Eigenvalues and eigenfunctions
Frequency control
Interconnected systems
Large-scale systems
Matrix decomposition
Routing
State feedback
Sufficient conditions
title Topological optimization of networks: A nonlinear mixed integer model employing generalized Benders decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20optimization%20of%20networks:%20A%20nonlinear%20mixed%20integer%20model%20employing%20generalized%20Benders%20decomposition&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Hoang%20Hoc&rft.date=1982-02-01&rft.volume=27&rft.issue=1&rft.spage=164&rft.epage=169&rft.pages=164-169&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1982.1102873&rft_dat=%3Cproquest_RIE%3E29074921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28634126&rft_id=info:pmid/&rft_ieee_id=1102873&rfr_iscdi=true