Configured quantum reservoir computing for multi-task machine learning
[Display omitted] Amidst the rapid advancements in experimental technology, noise-intermediate-scale quantum (NISQ) devices have become increasingly programmable, offering versatile opportunities to leverage quantum computational advantage. Here we explore the intricate dynamics of programmable NISQ...
Gespeichert in:
Veröffentlicht in: | Science bulletin 2023-10, Vol.68 (20), p.2321-2329 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2329 |
---|---|
container_issue | 20 |
container_start_page | 2321 |
container_title | Science bulletin |
container_volume | 68 |
creator | Xia, Wei Zou, Jie Qiu, Xingze Chen, Feng Zhu, Bing Li, Chunhe Deng, Dong-Ling Li, Xiaopeng |
description | [Display omitted]
Amidst the rapid advancements in experimental technology, noise-intermediate-scale quantum (NISQ) devices have become increasingly programmable, offering versatile opportunities to leverage quantum computational advantage. Here we explore the intricate dynamics of programmable NISQ devices for quantum reservoir computing. Using a genetic algorithm to configure the quantum reservoir dynamics, we systematically enhance the learning performance. Remarkably, a single configured quantum reservoir can simultaneously learn multiple tasks, including a synthetic oscillatory network of transcriptional regulators, chaotic motifs in gene regulatory networks, and the fractional-order Chua’s circuit. Our configured quantum reservoir computing yields highly precise predictions for these learning tasks, outperforming classical reservoir computing. We also test the configured quantum reservoir computing in foreign exchange (FX) market applications and demonstrate its capability to capture the stochastic evolution of the exchange rates with significantly greater accuracy than classical reservoir computing approaches. Through comparison with classical reservoir computing, we highlight the unique role of quantum coherence in the quantum reservoir, which underpins its exceptional learning performance. Our findings suggest the exciting potential of configured quantum reservoir computing for exploiting the quantum computation power of NISQ devices in developing artificial general intelligence. |
doi_str_mv | 10.1016/j.scib.2023.08.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2863301347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2095927323005807</els_id><sourcerecordid>2863301347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-b3d25375fd055197722296451c64197fb05fd6c7f30919e3178c6bdfe609d9de3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouKz7Bzz16KV1krRNA15kcVVY8KLn0CaTNWvb7Cbtgv_elhWPnmaG997A-wi5pZBRoOX9PovaNRkDxjOoMsjhgiwYyCKVrKKXf7vg12QV4x4AaC5ZDmJBNmvfW7cbA5rkONb9MHZJwIjh5F1ItO8O4-D6XWJ9SLqxHVw61PEr6Wr96XpMWqxDP-k35MrWbcTV71ySj83T-_ol3b49v64ft6nmnA9pww0ruCisgaKgUgjGmCzzguoyn07bwCSVWlgOkkrkVFS6bIzFEqSRBvmS3J3_HoI_jhgH1bmosW3rHv0YFatKzoHyXExWdrbq4GMMaNUhuK4O34qCmrmpvZq5qZmbgkpN3KbQwzmEU4mTwzBbsNdoXEA9KOPdf_EfR4t2IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863301347</pqid></control><display><type>article</type><title>Configured quantum reservoir computing for multi-task machine learning</title><source>Alma/SFX Local Collection</source><creator>Xia, Wei ; Zou, Jie ; Qiu, Xingze ; Chen, Feng ; Zhu, Bing ; Li, Chunhe ; Deng, Dong-Ling ; Li, Xiaopeng</creator><creatorcontrib>Xia, Wei ; Zou, Jie ; Qiu, Xingze ; Chen, Feng ; Zhu, Bing ; Li, Chunhe ; Deng, Dong-Ling ; Li, Xiaopeng</creatorcontrib><description>[Display omitted]
Amidst the rapid advancements in experimental technology, noise-intermediate-scale quantum (NISQ) devices have become increasingly programmable, offering versatile opportunities to leverage quantum computational advantage. Here we explore the intricate dynamics of programmable NISQ devices for quantum reservoir computing. Using a genetic algorithm to configure the quantum reservoir dynamics, we systematically enhance the learning performance. Remarkably, a single configured quantum reservoir can simultaneously learn multiple tasks, including a synthetic oscillatory network of transcriptional regulators, chaotic motifs in gene regulatory networks, and the fractional-order Chua’s circuit. Our configured quantum reservoir computing yields highly precise predictions for these learning tasks, outperforming classical reservoir computing. We also test the configured quantum reservoir computing in foreign exchange (FX) market applications and demonstrate its capability to capture the stochastic evolution of the exchange rates with significantly greater accuracy than classical reservoir computing approaches. Through comparison with classical reservoir computing, we highlight the unique role of quantum coherence in the quantum reservoir, which underpins its exceptional learning performance. Our findings suggest the exciting potential of configured quantum reservoir computing for exploiting the quantum computation power of NISQ devices in developing artificial general intelligence.</description><identifier>ISSN: 2095-9273</identifier><identifier>EISSN: 2095-9281</identifier><identifier>DOI: 10.1016/j.scib.2023.08.040</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Configured quantum reservoir computing ; Multi-task learning ; Quantum advantage ; Quantum coherence</subject><ispartof>Science bulletin, 2023-10, Vol.68 (20), p.2321-2329</ispartof><rights>2023 Science China Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-b3d25375fd055197722296451c64197fb05fd6c7f30919e3178c6bdfe609d9de3</citedby><cites>FETCH-LOGICAL-c333t-b3d25375fd055197722296451c64197fb05fd6c7f30919e3178c6bdfe609d9de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>Zou, Jie</creatorcontrib><creatorcontrib>Qiu, Xingze</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Zhu, Bing</creatorcontrib><creatorcontrib>Li, Chunhe</creatorcontrib><creatorcontrib>Deng, Dong-Ling</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><title>Configured quantum reservoir computing for multi-task machine learning</title><title>Science bulletin</title><description>[Display omitted]
Amidst the rapid advancements in experimental technology, noise-intermediate-scale quantum (NISQ) devices have become increasingly programmable, offering versatile opportunities to leverage quantum computational advantage. Here we explore the intricate dynamics of programmable NISQ devices for quantum reservoir computing. Using a genetic algorithm to configure the quantum reservoir dynamics, we systematically enhance the learning performance. Remarkably, a single configured quantum reservoir can simultaneously learn multiple tasks, including a synthetic oscillatory network of transcriptional regulators, chaotic motifs in gene regulatory networks, and the fractional-order Chua’s circuit. Our configured quantum reservoir computing yields highly precise predictions for these learning tasks, outperforming classical reservoir computing. We also test the configured quantum reservoir computing in foreign exchange (FX) market applications and demonstrate its capability to capture the stochastic evolution of the exchange rates with significantly greater accuracy than classical reservoir computing approaches. Through comparison with classical reservoir computing, we highlight the unique role of quantum coherence in the quantum reservoir, which underpins its exceptional learning performance. Our findings suggest the exciting potential of configured quantum reservoir computing for exploiting the quantum computation power of NISQ devices in developing artificial general intelligence.</description><subject>Configured quantum reservoir computing</subject><subject>Multi-task learning</subject><subject>Quantum advantage</subject><subject>Quantum coherence</subject><issn>2095-9273</issn><issn>2095-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouKz7Bzz16KV1krRNA15kcVVY8KLn0CaTNWvb7Cbtgv_elhWPnmaG997A-wi5pZBRoOX9PovaNRkDxjOoMsjhgiwYyCKVrKKXf7vg12QV4x4AaC5ZDmJBNmvfW7cbA5rkONb9MHZJwIjh5F1ItO8O4-D6XWJ9SLqxHVw61PEr6Wr96XpMWqxDP-k35MrWbcTV71ySj83T-_ol3b49v64ft6nmnA9pww0ruCisgaKgUgjGmCzzguoyn07bwCSVWlgOkkrkVFS6bIzFEqSRBvmS3J3_HoI_jhgH1bmosW3rHv0YFatKzoHyXExWdrbq4GMMaNUhuK4O34qCmrmpvZq5qZmbgkpN3KbQwzmEU4mTwzBbsNdoXEA9KOPdf_EfR4t2IQ</recordid><startdate>20231030</startdate><enddate>20231030</enddate><creator>Xia, Wei</creator><creator>Zou, Jie</creator><creator>Qiu, Xingze</creator><creator>Chen, Feng</creator><creator>Zhu, Bing</creator><creator>Li, Chunhe</creator><creator>Deng, Dong-Ling</creator><creator>Li, Xiaopeng</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20231030</creationdate><title>Configured quantum reservoir computing for multi-task machine learning</title><author>Xia, Wei ; Zou, Jie ; Qiu, Xingze ; Chen, Feng ; Zhu, Bing ; Li, Chunhe ; Deng, Dong-Ling ; Li, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-b3d25375fd055197722296451c64197fb05fd6c7f30919e3178c6bdfe609d9de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Configured quantum reservoir computing</topic><topic>Multi-task learning</topic><topic>Quantum advantage</topic><topic>Quantum coherence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>Zou, Jie</creatorcontrib><creatorcontrib>Qiu, Xingze</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Zhu, Bing</creatorcontrib><creatorcontrib>Li, Chunhe</creatorcontrib><creatorcontrib>Deng, Dong-Ling</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Wei</au><au>Zou, Jie</au><au>Qiu, Xingze</au><au>Chen, Feng</au><au>Zhu, Bing</au><au>Li, Chunhe</au><au>Deng, Dong-Ling</au><au>Li, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Configured quantum reservoir computing for multi-task machine learning</atitle><jtitle>Science bulletin</jtitle><date>2023-10-30</date><risdate>2023</risdate><volume>68</volume><issue>20</issue><spage>2321</spage><epage>2329</epage><pages>2321-2329</pages><issn>2095-9273</issn><eissn>2095-9281</eissn><abstract>[Display omitted]
Amidst the rapid advancements in experimental technology, noise-intermediate-scale quantum (NISQ) devices have become increasingly programmable, offering versatile opportunities to leverage quantum computational advantage. Here we explore the intricate dynamics of programmable NISQ devices for quantum reservoir computing. Using a genetic algorithm to configure the quantum reservoir dynamics, we systematically enhance the learning performance. Remarkably, a single configured quantum reservoir can simultaneously learn multiple tasks, including a synthetic oscillatory network of transcriptional regulators, chaotic motifs in gene regulatory networks, and the fractional-order Chua’s circuit. Our configured quantum reservoir computing yields highly precise predictions for these learning tasks, outperforming classical reservoir computing. We also test the configured quantum reservoir computing in foreign exchange (FX) market applications and demonstrate its capability to capture the stochastic evolution of the exchange rates with significantly greater accuracy than classical reservoir computing approaches. Through comparison with classical reservoir computing, we highlight the unique role of quantum coherence in the quantum reservoir, which underpins its exceptional learning performance. Our findings suggest the exciting potential of configured quantum reservoir computing for exploiting the quantum computation power of NISQ devices in developing artificial general intelligence.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.scib.2023.08.040</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-9273 |
ispartof | Science bulletin, 2023-10, Vol.68 (20), p.2321-2329 |
issn | 2095-9273 2095-9281 |
language | eng |
recordid | cdi_proquest_miscellaneous_2863301347 |
source | Alma/SFX Local Collection |
subjects | Configured quantum reservoir computing Multi-task learning Quantum advantage Quantum coherence |
title | Configured quantum reservoir computing for multi-task machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Configured%20quantum%20reservoir%20computing%20for%20multi-task%20machine%20learning&rft.jtitle=Science%20bulletin&rft.au=Xia,%20Wei&rft.date=2023-10-30&rft.volume=68&rft.issue=20&rft.spage=2321&rft.epage=2329&rft.pages=2321-2329&rft.issn=2095-9273&rft.eissn=2095-9281&rft_id=info:doi/10.1016/j.scib.2023.08.040&rft_dat=%3Cproquest_cross%3E2863301347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863301347&rft_id=info:pmid/&rft_els_id=S2095927323005807&rfr_iscdi=true |