Configured quantum reservoir computing for multi-task machine learning

[Display omitted] Amidst the rapid advancements in experimental technology, noise-intermediate-scale quantum (NISQ) devices have become increasingly programmable, offering versatile opportunities to leverage quantum computational advantage. Here we explore the intricate dynamics of programmable NISQ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science bulletin 2023-10, Vol.68 (20), p.2321-2329
Hauptverfasser: Xia, Wei, Zou, Jie, Qiu, Xingze, Chen, Feng, Zhu, Bing, Li, Chunhe, Deng, Dong-Ling, Li, Xiaopeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2329
container_issue 20
container_start_page 2321
container_title Science bulletin
container_volume 68
creator Xia, Wei
Zou, Jie
Qiu, Xingze
Chen, Feng
Zhu, Bing
Li, Chunhe
Deng, Dong-Ling
Li, Xiaopeng
description [Display omitted] Amidst the rapid advancements in experimental technology, noise-intermediate-scale quantum (NISQ) devices have become increasingly programmable, offering versatile opportunities to leverage quantum computational advantage. Here we explore the intricate dynamics of programmable NISQ devices for quantum reservoir computing. Using a genetic algorithm to configure the quantum reservoir dynamics, we systematically enhance the learning performance. Remarkably, a single configured quantum reservoir can simultaneously learn multiple tasks, including a synthetic oscillatory network of transcriptional regulators, chaotic motifs in gene regulatory networks, and the fractional-order Chua’s circuit. Our configured quantum reservoir computing yields highly precise predictions for these learning tasks, outperforming classical reservoir computing. We also test the configured quantum reservoir computing in foreign exchange (FX) market applications and demonstrate its capability to capture the stochastic evolution of the exchange rates with significantly greater accuracy than classical reservoir computing approaches. Through comparison with classical reservoir computing, we highlight the unique role of quantum coherence in the quantum reservoir, which underpins its exceptional learning performance. Our findings suggest the exciting potential of configured quantum reservoir computing for exploiting the quantum computation power of NISQ devices in developing artificial general intelligence.
doi_str_mv 10.1016/j.scib.2023.08.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2863301347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2095927323005807</els_id><sourcerecordid>2863301347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-b3d25375fd055197722296451c64197fb05fd6c7f30919e3178c6bdfe609d9de3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouKz7Bzz16KV1krRNA15kcVVY8KLn0CaTNWvb7Cbtgv_elhWPnmaG997A-wi5pZBRoOX9PovaNRkDxjOoMsjhgiwYyCKVrKKXf7vg12QV4x4AaC5ZDmJBNmvfW7cbA5rkONb9MHZJwIjh5F1ItO8O4-D6XWJ9SLqxHVw61PEr6Wr96XpMWqxDP-k35MrWbcTV71ySj83T-_ol3b49v64ft6nmnA9pww0ruCisgaKgUgjGmCzzguoyn07bwCSVWlgOkkrkVFS6bIzFEqSRBvmS3J3_HoI_jhgH1bmosW3rHv0YFatKzoHyXExWdrbq4GMMaNUhuK4O34qCmrmpvZq5qZmbgkpN3KbQwzmEU4mTwzBbsNdoXEA9KOPdf_EfR4t2IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863301347</pqid></control><display><type>article</type><title>Configured quantum reservoir computing for multi-task machine learning</title><source>Alma/SFX Local Collection</source><creator>Xia, Wei ; Zou, Jie ; Qiu, Xingze ; Chen, Feng ; Zhu, Bing ; Li, Chunhe ; Deng, Dong-Ling ; Li, Xiaopeng</creator><creatorcontrib>Xia, Wei ; Zou, Jie ; Qiu, Xingze ; Chen, Feng ; Zhu, Bing ; Li, Chunhe ; Deng, Dong-Ling ; Li, Xiaopeng</creatorcontrib><description>[Display omitted] Amidst the rapid advancements in experimental technology, noise-intermediate-scale quantum (NISQ) devices have become increasingly programmable, offering versatile opportunities to leverage quantum computational advantage. Here we explore the intricate dynamics of programmable NISQ devices for quantum reservoir computing. Using a genetic algorithm to configure the quantum reservoir dynamics, we systematically enhance the learning performance. Remarkably, a single configured quantum reservoir can simultaneously learn multiple tasks, including a synthetic oscillatory network of transcriptional regulators, chaotic motifs in gene regulatory networks, and the fractional-order Chua’s circuit. Our configured quantum reservoir computing yields highly precise predictions for these learning tasks, outperforming classical reservoir computing. We also test the configured quantum reservoir computing in foreign exchange (FX) market applications and demonstrate its capability to capture the stochastic evolution of the exchange rates with significantly greater accuracy than classical reservoir computing approaches. Through comparison with classical reservoir computing, we highlight the unique role of quantum coherence in the quantum reservoir, which underpins its exceptional learning performance. Our findings suggest the exciting potential of configured quantum reservoir computing for exploiting the quantum computation power of NISQ devices in developing artificial general intelligence.</description><identifier>ISSN: 2095-9273</identifier><identifier>EISSN: 2095-9281</identifier><identifier>DOI: 10.1016/j.scib.2023.08.040</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Configured quantum reservoir computing ; Multi-task learning ; Quantum advantage ; Quantum coherence</subject><ispartof>Science bulletin, 2023-10, Vol.68 (20), p.2321-2329</ispartof><rights>2023 Science China Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-b3d25375fd055197722296451c64197fb05fd6c7f30919e3178c6bdfe609d9de3</citedby><cites>FETCH-LOGICAL-c333t-b3d25375fd055197722296451c64197fb05fd6c7f30919e3178c6bdfe609d9de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>Zou, Jie</creatorcontrib><creatorcontrib>Qiu, Xingze</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Zhu, Bing</creatorcontrib><creatorcontrib>Li, Chunhe</creatorcontrib><creatorcontrib>Deng, Dong-Ling</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><title>Configured quantum reservoir computing for multi-task machine learning</title><title>Science bulletin</title><description>[Display omitted] Amidst the rapid advancements in experimental technology, noise-intermediate-scale quantum (NISQ) devices have become increasingly programmable, offering versatile opportunities to leverage quantum computational advantage. Here we explore the intricate dynamics of programmable NISQ devices for quantum reservoir computing. Using a genetic algorithm to configure the quantum reservoir dynamics, we systematically enhance the learning performance. Remarkably, a single configured quantum reservoir can simultaneously learn multiple tasks, including a synthetic oscillatory network of transcriptional regulators, chaotic motifs in gene regulatory networks, and the fractional-order Chua’s circuit. Our configured quantum reservoir computing yields highly precise predictions for these learning tasks, outperforming classical reservoir computing. We also test the configured quantum reservoir computing in foreign exchange (FX) market applications and demonstrate its capability to capture the stochastic evolution of the exchange rates with significantly greater accuracy than classical reservoir computing approaches. Through comparison with classical reservoir computing, we highlight the unique role of quantum coherence in the quantum reservoir, which underpins its exceptional learning performance. Our findings suggest the exciting potential of configured quantum reservoir computing for exploiting the quantum computation power of NISQ devices in developing artificial general intelligence.</description><subject>Configured quantum reservoir computing</subject><subject>Multi-task learning</subject><subject>Quantum advantage</subject><subject>Quantum coherence</subject><issn>2095-9273</issn><issn>2095-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouKz7Bzz16KV1krRNA15kcVVY8KLn0CaTNWvb7Cbtgv_elhWPnmaG997A-wi5pZBRoOX9PovaNRkDxjOoMsjhgiwYyCKVrKKXf7vg12QV4x4AaC5ZDmJBNmvfW7cbA5rkONb9MHZJwIjh5F1ItO8O4-D6XWJ9SLqxHVw61PEr6Wr96XpMWqxDP-k35MrWbcTV71ySj83T-_ol3b49v64ft6nmnA9pww0ruCisgaKgUgjGmCzzguoyn07bwCSVWlgOkkrkVFS6bIzFEqSRBvmS3J3_HoI_jhgH1bmosW3rHv0YFatKzoHyXExWdrbq4GMMaNUhuK4O34qCmrmpvZq5qZmbgkpN3KbQwzmEU4mTwzBbsNdoXEA9KOPdf_EfR4t2IQ</recordid><startdate>20231030</startdate><enddate>20231030</enddate><creator>Xia, Wei</creator><creator>Zou, Jie</creator><creator>Qiu, Xingze</creator><creator>Chen, Feng</creator><creator>Zhu, Bing</creator><creator>Li, Chunhe</creator><creator>Deng, Dong-Ling</creator><creator>Li, Xiaopeng</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20231030</creationdate><title>Configured quantum reservoir computing for multi-task machine learning</title><author>Xia, Wei ; Zou, Jie ; Qiu, Xingze ; Chen, Feng ; Zhu, Bing ; Li, Chunhe ; Deng, Dong-Ling ; Li, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-b3d25375fd055197722296451c64197fb05fd6c7f30919e3178c6bdfe609d9de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Configured quantum reservoir computing</topic><topic>Multi-task learning</topic><topic>Quantum advantage</topic><topic>Quantum coherence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>Zou, Jie</creatorcontrib><creatorcontrib>Qiu, Xingze</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Zhu, Bing</creatorcontrib><creatorcontrib>Li, Chunhe</creatorcontrib><creatorcontrib>Deng, Dong-Ling</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Wei</au><au>Zou, Jie</au><au>Qiu, Xingze</au><au>Chen, Feng</au><au>Zhu, Bing</au><au>Li, Chunhe</au><au>Deng, Dong-Ling</au><au>Li, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Configured quantum reservoir computing for multi-task machine learning</atitle><jtitle>Science bulletin</jtitle><date>2023-10-30</date><risdate>2023</risdate><volume>68</volume><issue>20</issue><spage>2321</spage><epage>2329</epage><pages>2321-2329</pages><issn>2095-9273</issn><eissn>2095-9281</eissn><abstract>[Display omitted] Amidst the rapid advancements in experimental technology, noise-intermediate-scale quantum (NISQ) devices have become increasingly programmable, offering versatile opportunities to leverage quantum computational advantage. Here we explore the intricate dynamics of programmable NISQ devices for quantum reservoir computing. Using a genetic algorithm to configure the quantum reservoir dynamics, we systematically enhance the learning performance. Remarkably, a single configured quantum reservoir can simultaneously learn multiple tasks, including a synthetic oscillatory network of transcriptional regulators, chaotic motifs in gene regulatory networks, and the fractional-order Chua’s circuit. Our configured quantum reservoir computing yields highly precise predictions for these learning tasks, outperforming classical reservoir computing. We also test the configured quantum reservoir computing in foreign exchange (FX) market applications and demonstrate its capability to capture the stochastic evolution of the exchange rates with significantly greater accuracy than classical reservoir computing approaches. Through comparison with classical reservoir computing, we highlight the unique role of quantum coherence in the quantum reservoir, which underpins its exceptional learning performance. Our findings suggest the exciting potential of configured quantum reservoir computing for exploiting the quantum computation power of NISQ devices in developing artificial general intelligence.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.scib.2023.08.040</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-9273
ispartof Science bulletin, 2023-10, Vol.68 (20), p.2321-2329
issn 2095-9273
2095-9281
language eng
recordid cdi_proquest_miscellaneous_2863301347
source Alma/SFX Local Collection
subjects Configured quantum reservoir computing
Multi-task learning
Quantum advantage
Quantum coherence
title Configured quantum reservoir computing for multi-task machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Configured%20quantum%20reservoir%20computing%20for%20multi-task%20machine%20learning&rft.jtitle=Science%20bulletin&rft.au=Xia,%20Wei&rft.date=2023-10-30&rft.volume=68&rft.issue=20&rft.spage=2321&rft.epage=2329&rft.pages=2321-2329&rft.issn=2095-9273&rft.eissn=2095-9281&rft_id=info:doi/10.1016/j.scib.2023.08.040&rft_dat=%3Cproquest_cross%3E2863301347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863301347&rft_id=info:pmid/&rft_els_id=S2095927323005807&rfr_iscdi=true