Integration of spatial and single-cell data across modalities with weakly linked features
Although single-cell and spatial sequencing methods enable simultaneous measurement of more than one biological modality, no technology can capture all modalities within the same cell. For current data integration methods, the feasibility of cross-modal integration relies on the existence of highly...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2024-07, Vol.42 (7), p.1096-1106 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1106 |
---|---|
container_issue | 7 |
container_start_page | 1096 |
container_title | Nature biotechnology |
container_volume | 42 |
creator | Chen, Shuxiao Zhu, Bokai Huang, Sijia Hickey, John W. Lin, Kevin Z. Snyder, Michael Greenleaf, William J. Nolan, Garry P. Zhang, Nancy R. Ma, Zongming |
description | Although single-cell and spatial sequencing methods enable simultaneous measurement of more than one biological modality, no technology can capture all modalities within the same cell. For current data integration methods, the feasibility of cross-modal integration relies on the existence of highly correlated, a priori ‘linked’ features. We describe matching X-modality via fuzzy smoothed embedding (MaxFuse), a cross-modal data integration method that, through iterative coembedding, data smoothing and cell matching, uses all information in each modality to obtain high-quality integration even when features are weakly linked. MaxFuse is modality-agnostic and demonstrates high robustness and accuracy in the weak linkage scenario, achieving 20~70% relative improvement over existing methods under key evaluation metrics on benchmarking datasets. A prototypical example of weak linkage is the integration of spatial proteomic data with single-cell sequencing data. On two example analyses of this type, MaxFuse enabled the spatial consolidation of proteomic, transcriptomic and epigenomic information at single-cell resolution on the same tissue section.
MaxFuse enables data integration between modalities even when features are weakly correlated. |
doi_str_mv | 10.1038/s41587-023-01935-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2863300476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081477714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-44233838d7bef4bf3e22749e1cf37f05cf19d84cd59d5fea4f39489ddcf518d73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWqt_wIMEvHhZTTbfRxE_CoIXPXgK6WZSt253a7JL8d-b2qrgwdMMzPO-M_MidELJBSVMXyZOhVYFKVlBqGGiIDtoRAWXBZVG7uaerMdUyAN0mNKcECK5lPvogCmpjOB8hF4mbQ-z6Pq6a3EXcFrm1jXYtR6nup01UFTQNNi73mFXxS4lvOi8a-q-hoRXdf-KV-Demg_c1O0beBzA9UOEdIT2gmsSHG_rGD3f3jxd3xcPj3eT66uHouLU9AXnJWOaaa-mEPg0MChLxQ3QKjAViKgCNV7zygvjRfbmgRmujfdVEDSr2Bidb3yXsXsfIPV2Uaf1za6Fbki21JIxQriSGT37g867Ibb5OsuIplwpRXmmyg319W2EYJexXrj4YSmx6-DtJnibg7dfwVuSRadb62G6AP8j-U46A2wDpDxqZxB_d_9j-wntAo6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081477714</pqid></control><display><type>article</type><title>Integration of spatial and single-cell data across modalities with weakly linked features</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Chen, Shuxiao ; Zhu, Bokai ; Huang, Sijia ; Hickey, John W. ; Lin, Kevin Z. ; Snyder, Michael ; Greenleaf, William J. ; Nolan, Garry P. ; Zhang, Nancy R. ; Ma, Zongming</creator><creatorcontrib>Chen, Shuxiao ; Zhu, Bokai ; Huang, Sijia ; Hickey, John W. ; Lin, Kevin Z. ; Snyder, Michael ; Greenleaf, William J. ; Nolan, Garry P. ; Zhang, Nancy R. ; Ma, Zongming</creatorcontrib><description>Although single-cell and spatial sequencing methods enable simultaneous measurement of more than one biological modality, no technology can capture all modalities within the same cell. For current data integration methods, the feasibility of cross-modal integration relies on the existence of highly correlated, a priori ‘linked’ features. We describe matching X-modality via fuzzy smoothed embedding (MaxFuse), a cross-modal data integration method that, through iterative coembedding, data smoothing and cell matching, uses all information in each modality to obtain high-quality integration even when features are weakly linked. MaxFuse is modality-agnostic and demonstrates high robustness and accuracy in the weak linkage scenario, achieving 20~70% relative improvement over existing methods under key evaluation metrics on benchmarking datasets. A prototypical example of weak linkage is the integration of spatial proteomic data with single-cell sequencing data. On two example analyses of this type, MaxFuse enabled the spatial consolidation of proteomic, transcriptomic and epigenomic information at single-cell resolution on the same tissue section.
MaxFuse enables data integration between modalities even when features are weakly correlated.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-023-01935-0</identifier><identifier>PMID: 37679544</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/2401 ; 631/114/2415 ; Agriculture ; Algorithms ; Animals ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Computational Biology - methods ; Data integration ; Data smoothing ; Embedding ; Humans ; Integration ; Life Sciences ; Matching ; Mice ; Modal data ; Proteomics ; Proteomics - methods ; Sensory integration ; Single-Cell Analysis - methods ; Spatial data ; Transcriptome - genetics ; Transcriptomics</subject><ispartof>Nature biotechnology, 2024-07, Vol.42 (7), p.1096-1106</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Nature Publishing Group Jul 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-44233838d7bef4bf3e22749e1cf37f05cf19d84cd59d5fea4f39489ddcf518d73</citedby><cites>FETCH-LOGICAL-c419t-44233838d7bef4bf3e22749e1cf37f05cf19d84cd59d5fea4f39489ddcf518d73</cites><orcidid>0000-0002-1236-9847 ; 0000-0002-8862-9043 ; 0000-0002-0880-5749 ; 0000-0001-9028-1624 ; 0000-0003-1409-3095 ; 0000-0003-0784-7987 ; 0000-0003-2401-0177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41587-023-01935-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41587-023-01935-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37679544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Shuxiao</creatorcontrib><creatorcontrib>Zhu, Bokai</creatorcontrib><creatorcontrib>Huang, Sijia</creatorcontrib><creatorcontrib>Hickey, John W.</creatorcontrib><creatorcontrib>Lin, Kevin Z.</creatorcontrib><creatorcontrib>Snyder, Michael</creatorcontrib><creatorcontrib>Greenleaf, William J.</creatorcontrib><creatorcontrib>Nolan, Garry P.</creatorcontrib><creatorcontrib>Zhang, Nancy R.</creatorcontrib><creatorcontrib>Ma, Zongming</creatorcontrib><title>Integration of spatial and single-cell data across modalities with weakly linked features</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Although single-cell and spatial sequencing methods enable simultaneous measurement of more than one biological modality, no technology can capture all modalities within the same cell. For current data integration methods, the feasibility of cross-modal integration relies on the existence of highly correlated, a priori ‘linked’ features. We describe matching X-modality via fuzzy smoothed embedding (MaxFuse), a cross-modal data integration method that, through iterative coembedding, data smoothing and cell matching, uses all information in each modality to obtain high-quality integration even when features are weakly linked. MaxFuse is modality-agnostic and demonstrates high robustness and accuracy in the weak linkage scenario, achieving 20~70% relative improvement over existing methods under key evaluation metrics on benchmarking datasets. A prototypical example of weak linkage is the integration of spatial proteomic data with single-cell sequencing data. On two example analyses of this type, MaxFuse enabled the spatial consolidation of proteomic, transcriptomic and epigenomic information at single-cell resolution on the same tissue section.
MaxFuse enables data integration between modalities even when features are weakly correlated.</description><subject>631/114/2401</subject><subject>631/114/2415</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Computational Biology - methods</subject><subject>Data integration</subject><subject>Data smoothing</subject><subject>Embedding</subject><subject>Humans</subject><subject>Integration</subject><subject>Life Sciences</subject><subject>Matching</subject><subject>Mice</subject><subject>Modal data</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Sensory integration</subject><subject>Single-Cell Analysis - methods</subject><subject>Spatial data</subject><subject>Transcriptome - genetics</subject><subject>Transcriptomics</subject><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMoWqt_wIMEvHhZTTbfRxE_CoIXPXgK6WZSt253a7JL8d-b2qrgwdMMzPO-M_MidELJBSVMXyZOhVYFKVlBqGGiIDtoRAWXBZVG7uaerMdUyAN0mNKcECK5lPvogCmpjOB8hF4mbQ-z6Pq6a3EXcFrm1jXYtR6nup01UFTQNNi73mFXxS4lvOi8a-q-hoRXdf-KV-Demg_c1O0beBzA9UOEdIT2gmsSHG_rGD3f3jxd3xcPj3eT66uHouLU9AXnJWOaaa-mEPg0MChLxQ3QKjAViKgCNV7zygvjRfbmgRmujfdVEDSr2Bidb3yXsXsfIPV2Uaf1za6Fbki21JIxQriSGT37g867Ibb5OsuIplwpRXmmyg319W2EYJexXrj4YSmx6-DtJnibg7dfwVuSRadb62G6AP8j-U46A2wDpDxqZxB_d_9j-wntAo6I</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Chen, Shuxiao</creator><creator>Zhu, Bokai</creator><creator>Huang, Sijia</creator><creator>Hickey, John W.</creator><creator>Lin, Kevin Z.</creator><creator>Snyder, Michael</creator><creator>Greenleaf, William J.</creator><creator>Nolan, Garry P.</creator><creator>Zhang, Nancy R.</creator><creator>Ma, Zongming</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1236-9847</orcidid><orcidid>https://orcid.org/0000-0002-8862-9043</orcidid><orcidid>https://orcid.org/0000-0002-0880-5749</orcidid><orcidid>https://orcid.org/0000-0001-9028-1624</orcidid><orcidid>https://orcid.org/0000-0003-1409-3095</orcidid><orcidid>https://orcid.org/0000-0003-0784-7987</orcidid><orcidid>https://orcid.org/0000-0003-2401-0177</orcidid></search><sort><creationdate>20240701</creationdate><title>Integration of spatial and single-cell data across modalities with weakly linked features</title><author>Chen, Shuxiao ; Zhu, Bokai ; Huang, Sijia ; Hickey, John W. ; Lin, Kevin Z. ; Snyder, Michael ; Greenleaf, William J. ; Nolan, Garry P. ; Zhang, Nancy R. ; Ma, Zongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-44233838d7bef4bf3e22749e1cf37f05cf19d84cd59d5fea4f39489ddcf518d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114/2401</topic><topic>631/114/2415</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Computational Biology - methods</topic><topic>Data integration</topic><topic>Data smoothing</topic><topic>Embedding</topic><topic>Humans</topic><topic>Integration</topic><topic>Life Sciences</topic><topic>Matching</topic><topic>Mice</topic><topic>Modal data</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Sensory integration</topic><topic>Single-Cell Analysis - methods</topic><topic>Spatial data</topic><topic>Transcriptome - genetics</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shuxiao</creatorcontrib><creatorcontrib>Zhu, Bokai</creatorcontrib><creatorcontrib>Huang, Sijia</creatorcontrib><creatorcontrib>Hickey, John W.</creatorcontrib><creatorcontrib>Lin, Kevin Z.</creatorcontrib><creatorcontrib>Snyder, Michael</creatorcontrib><creatorcontrib>Greenleaf, William J.</creatorcontrib><creatorcontrib>Nolan, Garry P.</creatorcontrib><creatorcontrib>Zhang, Nancy R.</creatorcontrib><creatorcontrib>Ma, Zongming</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shuxiao</au><au>Zhu, Bokai</au><au>Huang, Sijia</au><au>Hickey, John W.</au><au>Lin, Kevin Z.</au><au>Snyder, Michael</au><au>Greenleaf, William J.</au><au>Nolan, Garry P.</au><au>Zhang, Nancy R.</au><au>Ma, Zongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of spatial and single-cell data across modalities with weakly linked features</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>42</volume><issue>7</issue><spage>1096</spage><epage>1106</epage><pages>1096-1106</pages><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Although single-cell and spatial sequencing methods enable simultaneous measurement of more than one biological modality, no technology can capture all modalities within the same cell. For current data integration methods, the feasibility of cross-modal integration relies on the existence of highly correlated, a priori ‘linked’ features. We describe matching X-modality via fuzzy smoothed embedding (MaxFuse), a cross-modal data integration method that, through iterative coembedding, data smoothing and cell matching, uses all information in each modality to obtain high-quality integration even when features are weakly linked. MaxFuse is modality-agnostic and demonstrates high robustness and accuracy in the weak linkage scenario, achieving 20~70% relative improvement over existing methods under key evaluation metrics on benchmarking datasets. A prototypical example of weak linkage is the integration of spatial proteomic data with single-cell sequencing data. On two example analyses of this type, MaxFuse enabled the spatial consolidation of proteomic, transcriptomic and epigenomic information at single-cell resolution on the same tissue section.
MaxFuse enables data integration between modalities even when features are weakly correlated.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37679544</pmid><doi>10.1038/s41587-023-01935-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1236-9847</orcidid><orcidid>https://orcid.org/0000-0002-8862-9043</orcidid><orcidid>https://orcid.org/0000-0002-0880-5749</orcidid><orcidid>https://orcid.org/0000-0001-9028-1624</orcidid><orcidid>https://orcid.org/0000-0003-1409-3095</orcidid><orcidid>https://orcid.org/0000-0003-0784-7987</orcidid><orcidid>https://orcid.org/0000-0003-2401-0177</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2024-07, Vol.42 (7), p.1096-1106 |
issn | 1087-0156 1546-1696 1546-1696 |
language | eng |
recordid | cdi_proquest_miscellaneous_2863300476 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 631/114/2401 631/114/2415 Agriculture Algorithms Animals Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Computational Biology - methods Data integration Data smoothing Embedding Humans Integration Life Sciences Matching Mice Modal data Proteomics Proteomics - methods Sensory integration Single-Cell Analysis - methods Spatial data Transcriptome - genetics Transcriptomics |
title | Integration of spatial and single-cell data across modalities with weakly linked features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20spatial%20and%20single-cell%20data%20across%20modalities%20with%20weakly%20linked%20features&rft.jtitle=Nature%20biotechnology&rft.au=Chen,%20Shuxiao&rft.date=2024-07-01&rft.volume=42&rft.issue=7&rft.spage=1096&rft.epage=1106&rft.pages=1096-1106&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-023-01935-0&rft_dat=%3Cproquest_cross%3E3081477714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081477714&rft_id=info:pmid/37679544&rfr_iscdi=true |