Integration of spatial and single-cell data across modalities with weakly linked features

Although single-cell and spatial sequencing methods enable simultaneous measurement of more than one biological modality, no technology can capture all modalities within the same cell. For current data integration methods, the feasibility of cross-modal integration relies on the existence of highly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2024-07, Vol.42 (7), p.1096-1106
Hauptverfasser: Chen, Shuxiao, Zhu, Bokai, Huang, Sijia, Hickey, John W., Lin, Kevin Z., Snyder, Michael, Greenleaf, William J., Nolan, Garry P., Zhang, Nancy R., Ma, Zongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1106
container_issue 7
container_start_page 1096
container_title Nature biotechnology
container_volume 42
creator Chen, Shuxiao
Zhu, Bokai
Huang, Sijia
Hickey, John W.
Lin, Kevin Z.
Snyder, Michael
Greenleaf, William J.
Nolan, Garry P.
Zhang, Nancy R.
Ma, Zongming
description Although single-cell and spatial sequencing methods enable simultaneous measurement of more than one biological modality, no technology can capture all modalities within the same cell. For current data integration methods, the feasibility of cross-modal integration relies on the existence of highly correlated, a priori ‘linked’ features. We describe matching X-modality via fuzzy smoothed embedding (MaxFuse), a cross-modal data integration method that, through iterative coembedding, data smoothing and cell matching, uses all information in each modality to obtain high-quality integration even when features are weakly linked. MaxFuse is modality-agnostic and demonstrates high robustness and accuracy in the weak linkage scenario, achieving 20~70% relative improvement over existing methods under key evaluation metrics on benchmarking datasets. A prototypical example of weak linkage is the integration of spatial proteomic data with single-cell sequencing data. On two example analyses of this type, MaxFuse enabled the spatial consolidation of proteomic, transcriptomic and epigenomic information at single-cell resolution on the same tissue section. MaxFuse enables data integration between modalities even when features are weakly correlated.
doi_str_mv 10.1038/s41587-023-01935-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2863300476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081477714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-44233838d7bef4bf3e22749e1cf37f05cf19d84cd59d5fea4f39489ddcf518d73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWqt_wIMEvHhZTTbfRxE_CoIXPXgK6WZSt253a7JL8d-b2qrgwdMMzPO-M_MidELJBSVMXyZOhVYFKVlBqGGiIDtoRAWXBZVG7uaerMdUyAN0mNKcECK5lPvogCmpjOB8hF4mbQ-z6Pq6a3EXcFrm1jXYtR6nup01UFTQNNi73mFXxS4lvOi8a-q-hoRXdf-KV-Demg_c1O0beBzA9UOEdIT2gmsSHG_rGD3f3jxd3xcPj3eT66uHouLU9AXnJWOaaa-mEPg0MChLxQ3QKjAViKgCNV7zygvjRfbmgRmujfdVEDSr2Bidb3yXsXsfIPV2Uaf1za6Fbki21JIxQriSGT37g867Ibb5OsuIplwpRXmmyg319W2EYJexXrj4YSmx6-DtJnibg7dfwVuSRadb62G6AP8j-U46A2wDpDxqZxB_d_9j-wntAo6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081477714</pqid></control><display><type>article</type><title>Integration of spatial and single-cell data across modalities with weakly linked features</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Chen, Shuxiao ; Zhu, Bokai ; Huang, Sijia ; Hickey, John W. ; Lin, Kevin Z. ; Snyder, Michael ; Greenleaf, William J. ; Nolan, Garry P. ; Zhang, Nancy R. ; Ma, Zongming</creator><creatorcontrib>Chen, Shuxiao ; Zhu, Bokai ; Huang, Sijia ; Hickey, John W. ; Lin, Kevin Z. ; Snyder, Michael ; Greenleaf, William J. ; Nolan, Garry P. ; Zhang, Nancy R. ; Ma, Zongming</creatorcontrib><description>Although single-cell and spatial sequencing methods enable simultaneous measurement of more than one biological modality, no technology can capture all modalities within the same cell. For current data integration methods, the feasibility of cross-modal integration relies on the existence of highly correlated, a priori ‘linked’ features. We describe matching X-modality via fuzzy smoothed embedding (MaxFuse), a cross-modal data integration method that, through iterative coembedding, data smoothing and cell matching, uses all information in each modality to obtain high-quality integration even when features are weakly linked. MaxFuse is modality-agnostic and demonstrates high robustness and accuracy in the weak linkage scenario, achieving 20~70% relative improvement over existing methods under key evaluation metrics on benchmarking datasets. A prototypical example of weak linkage is the integration of spatial proteomic data with single-cell sequencing data. On two example analyses of this type, MaxFuse enabled the spatial consolidation of proteomic, transcriptomic and epigenomic information at single-cell resolution on the same tissue section. MaxFuse enables data integration between modalities even when features are weakly correlated.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-023-01935-0</identifier><identifier>PMID: 37679544</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/2401 ; 631/114/2415 ; Agriculture ; Algorithms ; Animals ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Computational Biology - methods ; Data integration ; Data smoothing ; Embedding ; Humans ; Integration ; Life Sciences ; Matching ; Mice ; Modal data ; Proteomics ; Proteomics - methods ; Sensory integration ; Single-Cell Analysis - methods ; Spatial data ; Transcriptome - genetics ; Transcriptomics</subject><ispartof>Nature biotechnology, 2024-07, Vol.42 (7), p.1096-1106</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Nature Publishing Group Jul 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-44233838d7bef4bf3e22749e1cf37f05cf19d84cd59d5fea4f39489ddcf518d73</citedby><cites>FETCH-LOGICAL-c419t-44233838d7bef4bf3e22749e1cf37f05cf19d84cd59d5fea4f39489ddcf518d73</cites><orcidid>0000-0002-1236-9847 ; 0000-0002-8862-9043 ; 0000-0002-0880-5749 ; 0000-0001-9028-1624 ; 0000-0003-1409-3095 ; 0000-0003-0784-7987 ; 0000-0003-2401-0177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41587-023-01935-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41587-023-01935-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37679544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Shuxiao</creatorcontrib><creatorcontrib>Zhu, Bokai</creatorcontrib><creatorcontrib>Huang, Sijia</creatorcontrib><creatorcontrib>Hickey, John W.</creatorcontrib><creatorcontrib>Lin, Kevin Z.</creatorcontrib><creatorcontrib>Snyder, Michael</creatorcontrib><creatorcontrib>Greenleaf, William J.</creatorcontrib><creatorcontrib>Nolan, Garry P.</creatorcontrib><creatorcontrib>Zhang, Nancy R.</creatorcontrib><creatorcontrib>Ma, Zongming</creatorcontrib><title>Integration of spatial and single-cell data across modalities with weakly linked features</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Although single-cell and spatial sequencing methods enable simultaneous measurement of more than one biological modality, no technology can capture all modalities within the same cell. For current data integration methods, the feasibility of cross-modal integration relies on the existence of highly correlated, a priori ‘linked’ features. We describe matching X-modality via fuzzy smoothed embedding (MaxFuse), a cross-modal data integration method that, through iterative coembedding, data smoothing and cell matching, uses all information in each modality to obtain high-quality integration even when features are weakly linked. MaxFuse is modality-agnostic and demonstrates high robustness and accuracy in the weak linkage scenario, achieving 20~70% relative improvement over existing methods under key evaluation metrics on benchmarking datasets. A prototypical example of weak linkage is the integration of spatial proteomic data with single-cell sequencing data. On two example analyses of this type, MaxFuse enabled the spatial consolidation of proteomic, transcriptomic and epigenomic information at single-cell resolution on the same tissue section. MaxFuse enables data integration between modalities even when features are weakly correlated.</description><subject>631/114/2401</subject><subject>631/114/2415</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Computational Biology - methods</subject><subject>Data integration</subject><subject>Data smoothing</subject><subject>Embedding</subject><subject>Humans</subject><subject>Integration</subject><subject>Life Sciences</subject><subject>Matching</subject><subject>Mice</subject><subject>Modal data</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Sensory integration</subject><subject>Single-Cell Analysis - methods</subject><subject>Spatial data</subject><subject>Transcriptome - genetics</subject><subject>Transcriptomics</subject><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMoWqt_wIMEvHhZTTbfRxE_CoIXPXgK6WZSt253a7JL8d-b2qrgwdMMzPO-M_MidELJBSVMXyZOhVYFKVlBqGGiIDtoRAWXBZVG7uaerMdUyAN0mNKcECK5lPvogCmpjOB8hF4mbQ-z6Pq6a3EXcFrm1jXYtR6nup01UFTQNNi73mFXxS4lvOi8a-q-hoRXdf-KV-Demg_c1O0beBzA9UOEdIT2gmsSHG_rGD3f3jxd3xcPj3eT66uHouLU9AXnJWOaaa-mEPg0MChLxQ3QKjAViKgCNV7zygvjRfbmgRmujfdVEDSr2Bidb3yXsXsfIPV2Uaf1za6Fbki21JIxQriSGT37g867Ibb5OsuIplwpRXmmyg319W2EYJexXrj4YSmx6-DtJnibg7dfwVuSRadb62G6AP8j-U46A2wDpDxqZxB_d_9j-wntAo6I</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Chen, Shuxiao</creator><creator>Zhu, Bokai</creator><creator>Huang, Sijia</creator><creator>Hickey, John W.</creator><creator>Lin, Kevin Z.</creator><creator>Snyder, Michael</creator><creator>Greenleaf, William J.</creator><creator>Nolan, Garry P.</creator><creator>Zhang, Nancy R.</creator><creator>Ma, Zongming</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1236-9847</orcidid><orcidid>https://orcid.org/0000-0002-8862-9043</orcidid><orcidid>https://orcid.org/0000-0002-0880-5749</orcidid><orcidid>https://orcid.org/0000-0001-9028-1624</orcidid><orcidid>https://orcid.org/0000-0003-1409-3095</orcidid><orcidid>https://orcid.org/0000-0003-0784-7987</orcidid><orcidid>https://orcid.org/0000-0003-2401-0177</orcidid></search><sort><creationdate>20240701</creationdate><title>Integration of spatial and single-cell data across modalities with weakly linked features</title><author>Chen, Shuxiao ; Zhu, Bokai ; Huang, Sijia ; Hickey, John W. ; Lin, Kevin Z. ; Snyder, Michael ; Greenleaf, William J. ; Nolan, Garry P. ; Zhang, Nancy R. ; Ma, Zongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-44233838d7bef4bf3e22749e1cf37f05cf19d84cd59d5fea4f39489ddcf518d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114/2401</topic><topic>631/114/2415</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Computational Biology - methods</topic><topic>Data integration</topic><topic>Data smoothing</topic><topic>Embedding</topic><topic>Humans</topic><topic>Integration</topic><topic>Life Sciences</topic><topic>Matching</topic><topic>Mice</topic><topic>Modal data</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Sensory integration</topic><topic>Single-Cell Analysis - methods</topic><topic>Spatial data</topic><topic>Transcriptome - genetics</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shuxiao</creatorcontrib><creatorcontrib>Zhu, Bokai</creatorcontrib><creatorcontrib>Huang, Sijia</creatorcontrib><creatorcontrib>Hickey, John W.</creatorcontrib><creatorcontrib>Lin, Kevin Z.</creatorcontrib><creatorcontrib>Snyder, Michael</creatorcontrib><creatorcontrib>Greenleaf, William J.</creatorcontrib><creatorcontrib>Nolan, Garry P.</creatorcontrib><creatorcontrib>Zhang, Nancy R.</creatorcontrib><creatorcontrib>Ma, Zongming</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shuxiao</au><au>Zhu, Bokai</au><au>Huang, Sijia</au><au>Hickey, John W.</au><au>Lin, Kevin Z.</au><au>Snyder, Michael</au><au>Greenleaf, William J.</au><au>Nolan, Garry P.</au><au>Zhang, Nancy R.</au><au>Ma, Zongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of spatial and single-cell data across modalities with weakly linked features</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>42</volume><issue>7</issue><spage>1096</spage><epage>1106</epage><pages>1096-1106</pages><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Although single-cell and spatial sequencing methods enable simultaneous measurement of more than one biological modality, no technology can capture all modalities within the same cell. For current data integration methods, the feasibility of cross-modal integration relies on the existence of highly correlated, a priori ‘linked’ features. We describe matching X-modality via fuzzy smoothed embedding (MaxFuse), a cross-modal data integration method that, through iterative coembedding, data smoothing and cell matching, uses all information in each modality to obtain high-quality integration even when features are weakly linked. MaxFuse is modality-agnostic and demonstrates high robustness and accuracy in the weak linkage scenario, achieving 20~70% relative improvement over existing methods under key evaluation metrics on benchmarking datasets. A prototypical example of weak linkage is the integration of spatial proteomic data with single-cell sequencing data. On two example analyses of this type, MaxFuse enabled the spatial consolidation of proteomic, transcriptomic and epigenomic information at single-cell resolution on the same tissue section. MaxFuse enables data integration between modalities even when features are weakly correlated.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37679544</pmid><doi>10.1038/s41587-023-01935-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1236-9847</orcidid><orcidid>https://orcid.org/0000-0002-8862-9043</orcidid><orcidid>https://orcid.org/0000-0002-0880-5749</orcidid><orcidid>https://orcid.org/0000-0001-9028-1624</orcidid><orcidid>https://orcid.org/0000-0003-1409-3095</orcidid><orcidid>https://orcid.org/0000-0003-0784-7987</orcidid><orcidid>https://orcid.org/0000-0003-2401-0177</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2024-07, Vol.42 (7), p.1096-1106
issn 1087-0156
1546-1696
1546-1696
language eng
recordid cdi_proquest_miscellaneous_2863300476
source MEDLINE; SpringerLink Journals; Nature
subjects 631/114/2401
631/114/2415
Agriculture
Algorithms
Animals
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Computational Biology - methods
Data integration
Data smoothing
Embedding
Humans
Integration
Life Sciences
Matching
Mice
Modal data
Proteomics
Proteomics - methods
Sensory integration
Single-Cell Analysis - methods
Spatial data
Transcriptome - genetics
Transcriptomics
title Integration of spatial and single-cell data across modalities with weakly linked features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20spatial%20and%20single-cell%20data%20across%20modalities%20with%20weakly%20linked%20features&rft.jtitle=Nature%20biotechnology&rft.au=Chen,%20Shuxiao&rft.date=2024-07-01&rft.volume=42&rft.issue=7&rft.spage=1096&rft.epage=1106&rft.pages=1096-1106&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-023-01935-0&rft_dat=%3Cproquest_cross%3E3081477714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081477714&rft_id=info:pmid/37679544&rfr_iscdi=true