Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues

Stem cells in their natural microenvironment are exposed to biochemical and biophysical cues emerging from the extracellular matrix (ECM) and neighboring cells. In particular, biomechanical forces modulate stem cell behavior, biological fate, and early developmental processes by sensing, interpretin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental cell research 2023-10, Vol.431 (2), p.113766-113766, Article 113766
Hauptverfasser: Bakhshandeh, Behnaz, Sorboni, Shokufeh Ghasemian, Ranjbar, Nika, Deyhimfar, Roham, Abtahi, Maryam Sadat, Izady, Mehrnaz, Kazemi, Navid, Noori, Atefeh, Pennisi, Cristian Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113766
container_issue 2
container_start_page 113766
container_title Experimental cell research
container_volume 431
creator Bakhshandeh, Behnaz
Sorboni, Shokufeh Ghasemian
Ranjbar, Nika
Deyhimfar, Roham
Abtahi, Maryam Sadat
Izady, Mehrnaz
Kazemi, Navid
Noori, Atefeh
Pennisi, Cristian Pablo
description Stem cells in their natural microenvironment are exposed to biochemical and biophysical cues emerging from the extracellular matrix (ECM) and neighboring cells. In particular, biomechanical forces modulate stem cell behavior, biological fate, and early developmental processes by sensing, interpreting, and responding through a series of biological processes known as mechanotransduction. Local structural changes in the ECM and mechanics are driven by reciprocal activation of the cell and the ECM itself, as the initial deposition of matrix proteins sequentially affects neighboring cells. Recent studies on stem cell mechanoregulation have provided insight into the importance of biomechanical signals on proper tissue regeneration and function and have shown that precise spatiotemporal control of these signals exists in stem cell niches. Against this background, the aim of this work is to review the current understanding of the molecular basis of mechanotransduction by analyzing how biomechanical forces are converted into biological responses via cellular signaling pathways. In addition, this work provides an overview of advanced strategies using stem cells and biomaterial scaffolds that enable precise spatial and temporal control of mechanical signals and offer great potential for the fields of tissue engineering and regenerative medicine will be presented.
doi_str_mv 10.1016/j.yexcr.2023.113766
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2863298212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014482723003142</els_id><sourcerecordid>2863298212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-1397809f2d7d39116abf1a20a0d961cf9e5dc91f69298c206bee591bd1b62fec3</originalsourceid><addsrcrecordid>eNp9kE9PAjEQxRujiYh-Ai89elnstFC2Jh4M8Q8Jxouem253Fkqgxbar8u1dWM-eZpJ5vzczj5BrYCNgIG_Xoz3-2DjijIsRgJhKeUIGwBQr-JjzUzJgDMbFuOTTc3KR0poxVpYgB8S_ol0ZH3I0PtWtzS546jzNLqUWKfql84jR-eUdnfvklqucunkONK_w0GA0PRQamjJuqcXNJtFvl1e0cmF7tHfWbKhtMV2Ss8ZsEl791SH5eHp8n70Ui7fn-exhUVghZC5AqGnJVMPraS0UgDRVA4Yzw2olwTYKJ7VV0EjFVWk5kxXiREFVQyV5g1YMyU3vu4vhs9ub9dalw2XGY2iT5qUUHcqBd1LRS20MKUVs9C66rYl7DUwf0tVrfUxXH9LVfboddd9T2H3x5TDqZB16i7WLaLOug_uX_wXFPIam</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863298212</pqid></control><display><type>article</type><title>Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues</title><source>Elsevier ScienceDirect Journals</source><creator>Bakhshandeh, Behnaz ; Sorboni, Shokufeh Ghasemian ; Ranjbar, Nika ; Deyhimfar, Roham ; Abtahi, Maryam Sadat ; Izady, Mehrnaz ; Kazemi, Navid ; Noori, Atefeh ; Pennisi, Cristian Pablo</creator><creatorcontrib>Bakhshandeh, Behnaz ; Sorboni, Shokufeh Ghasemian ; Ranjbar, Nika ; Deyhimfar, Roham ; Abtahi, Maryam Sadat ; Izady, Mehrnaz ; Kazemi, Navid ; Noori, Atefeh ; Pennisi, Cristian Pablo</creatorcontrib><description>Stem cells in their natural microenvironment are exposed to biochemical and biophysical cues emerging from the extracellular matrix (ECM) and neighboring cells. In particular, biomechanical forces modulate stem cell behavior, biological fate, and early developmental processes by sensing, interpreting, and responding through a series of biological processes known as mechanotransduction. Local structural changes in the ECM and mechanics are driven by reciprocal activation of the cell and the ECM itself, as the initial deposition of matrix proteins sequentially affects neighboring cells. Recent studies on stem cell mechanoregulation have provided insight into the importance of biomechanical signals on proper tissue regeneration and function and have shown that precise spatiotemporal control of these signals exists in stem cell niches. Against this background, the aim of this work is to review the current understanding of the molecular basis of mechanotransduction by analyzing how biomechanical forces are converted into biological responses via cellular signaling pathways. In addition, this work provides an overview of advanced strategies using stem cells and biomaterial scaffolds that enable precise spatial and temporal control of mechanical signals and offer great potential for the fields of tissue engineering and regenerative medicine will be presented.</description><identifier>ISSN: 0014-4827</identifier><identifier>EISSN: 1090-2422</identifier><identifier>DOI: 10.1016/j.yexcr.2023.113766</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Biomaterial scaffolds ; Biomechanical forces ; Mechanotransduction ; Regenerative medicine ; Stem cells</subject><ispartof>Experimental cell research, 2023-10, Vol.431 (2), p.113766-113766, Article 113766</ispartof><rights>2023 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-1397809f2d7d39116abf1a20a0d961cf9e5dc91f69298c206bee591bd1b62fec3</citedby><cites>FETCH-LOGICAL-c336t-1397809f2d7d39116abf1a20a0d961cf9e5dc91f69298c206bee591bd1b62fec3</cites><orcidid>0000-0002-7716-1182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014482723003142$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bakhshandeh, Behnaz</creatorcontrib><creatorcontrib>Sorboni, Shokufeh Ghasemian</creatorcontrib><creatorcontrib>Ranjbar, Nika</creatorcontrib><creatorcontrib>Deyhimfar, Roham</creatorcontrib><creatorcontrib>Abtahi, Maryam Sadat</creatorcontrib><creatorcontrib>Izady, Mehrnaz</creatorcontrib><creatorcontrib>Kazemi, Navid</creatorcontrib><creatorcontrib>Noori, Atefeh</creatorcontrib><creatorcontrib>Pennisi, Cristian Pablo</creatorcontrib><title>Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues</title><title>Experimental cell research</title><description>Stem cells in their natural microenvironment are exposed to biochemical and biophysical cues emerging from the extracellular matrix (ECM) and neighboring cells. In particular, biomechanical forces modulate stem cell behavior, biological fate, and early developmental processes by sensing, interpreting, and responding through a series of biological processes known as mechanotransduction. Local structural changes in the ECM and mechanics are driven by reciprocal activation of the cell and the ECM itself, as the initial deposition of matrix proteins sequentially affects neighboring cells. Recent studies on stem cell mechanoregulation have provided insight into the importance of biomechanical signals on proper tissue regeneration and function and have shown that precise spatiotemporal control of these signals exists in stem cell niches. Against this background, the aim of this work is to review the current understanding of the molecular basis of mechanotransduction by analyzing how biomechanical forces are converted into biological responses via cellular signaling pathways. In addition, this work provides an overview of advanced strategies using stem cells and biomaterial scaffolds that enable precise spatial and temporal control of mechanical signals and offer great potential for the fields of tissue engineering and regenerative medicine will be presented.</description><subject>Biomaterial scaffolds</subject><subject>Biomechanical forces</subject><subject>Mechanotransduction</subject><subject>Regenerative medicine</subject><subject>Stem cells</subject><issn>0014-4827</issn><issn>1090-2422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAjEQxRujiYh-Ai89elnstFC2Jh4M8Q8Jxouem253Fkqgxbar8u1dWM-eZpJ5vzczj5BrYCNgIG_Xoz3-2DjijIsRgJhKeUIGwBQr-JjzUzJgDMbFuOTTc3KR0poxVpYgB8S_ol0ZH3I0PtWtzS546jzNLqUWKfql84jR-eUdnfvklqucunkONK_w0GA0PRQamjJuqcXNJtFvl1e0cmF7tHfWbKhtMV2Ss8ZsEl791SH5eHp8n70Ui7fn-exhUVghZC5AqGnJVMPraS0UgDRVA4Yzw2olwTYKJ7VV0EjFVWk5kxXiREFVQyV5g1YMyU3vu4vhs9ub9dalw2XGY2iT5qUUHcqBd1LRS20MKUVs9C66rYl7DUwf0tVrfUxXH9LVfboddd9T2H3x5TDqZB16i7WLaLOug_uX_wXFPIam</recordid><startdate>20231015</startdate><enddate>20231015</enddate><creator>Bakhshandeh, Behnaz</creator><creator>Sorboni, Shokufeh Ghasemian</creator><creator>Ranjbar, Nika</creator><creator>Deyhimfar, Roham</creator><creator>Abtahi, Maryam Sadat</creator><creator>Izady, Mehrnaz</creator><creator>Kazemi, Navid</creator><creator>Noori, Atefeh</creator><creator>Pennisi, Cristian Pablo</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7716-1182</orcidid></search><sort><creationdate>20231015</creationdate><title>Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues</title><author>Bakhshandeh, Behnaz ; Sorboni, Shokufeh Ghasemian ; Ranjbar, Nika ; Deyhimfar, Roham ; Abtahi, Maryam Sadat ; Izady, Mehrnaz ; Kazemi, Navid ; Noori, Atefeh ; Pennisi, Cristian Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-1397809f2d7d39116abf1a20a0d961cf9e5dc91f69298c206bee591bd1b62fec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomaterial scaffolds</topic><topic>Biomechanical forces</topic><topic>Mechanotransduction</topic><topic>Regenerative medicine</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakhshandeh, Behnaz</creatorcontrib><creatorcontrib>Sorboni, Shokufeh Ghasemian</creatorcontrib><creatorcontrib>Ranjbar, Nika</creatorcontrib><creatorcontrib>Deyhimfar, Roham</creatorcontrib><creatorcontrib>Abtahi, Maryam Sadat</creatorcontrib><creatorcontrib>Izady, Mehrnaz</creatorcontrib><creatorcontrib>Kazemi, Navid</creatorcontrib><creatorcontrib>Noori, Atefeh</creatorcontrib><creatorcontrib>Pennisi, Cristian Pablo</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakhshandeh, Behnaz</au><au>Sorboni, Shokufeh Ghasemian</au><au>Ranjbar, Nika</au><au>Deyhimfar, Roham</au><au>Abtahi, Maryam Sadat</au><au>Izady, Mehrnaz</au><au>Kazemi, Navid</au><au>Noori, Atefeh</au><au>Pennisi, Cristian Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues</atitle><jtitle>Experimental cell research</jtitle><date>2023-10-15</date><risdate>2023</risdate><volume>431</volume><issue>2</issue><spage>113766</spage><epage>113766</epage><pages>113766-113766</pages><artnum>113766</artnum><issn>0014-4827</issn><eissn>1090-2422</eissn><abstract>Stem cells in their natural microenvironment are exposed to biochemical and biophysical cues emerging from the extracellular matrix (ECM) and neighboring cells. In particular, biomechanical forces modulate stem cell behavior, biological fate, and early developmental processes by sensing, interpreting, and responding through a series of biological processes known as mechanotransduction. Local structural changes in the ECM and mechanics are driven by reciprocal activation of the cell and the ECM itself, as the initial deposition of matrix proteins sequentially affects neighboring cells. Recent studies on stem cell mechanoregulation have provided insight into the importance of biomechanical signals on proper tissue regeneration and function and have shown that precise spatiotemporal control of these signals exists in stem cell niches. Against this background, the aim of this work is to review the current understanding of the molecular basis of mechanotransduction by analyzing how biomechanical forces are converted into biological responses via cellular signaling pathways. In addition, this work provides an overview of advanced strategies using stem cells and biomaterial scaffolds that enable precise spatial and temporal control of mechanical signals and offer great potential for the fields of tissue engineering and regenerative medicine will be presented.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.yexcr.2023.113766</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7716-1182</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0014-4827
ispartof Experimental cell research, 2023-10, Vol.431 (2), p.113766-113766, Article 113766
issn 0014-4827
1090-2422
language eng
recordid cdi_proquest_miscellaneous_2863298212
source Elsevier ScienceDirect Journals
subjects Biomaterial scaffolds
Biomechanical forces
Mechanotransduction
Regenerative medicine
Stem cells
title Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanotransduction%20in%20tissue%20engineering:%20Insights%20into%20the%20interaction%20of%20stem%20cells%20with%20biomechanical%20cues&rft.jtitle=Experimental%20cell%20research&rft.au=Bakhshandeh,%20Behnaz&rft.date=2023-10-15&rft.volume=431&rft.issue=2&rft.spage=113766&rft.epage=113766&rft.pages=113766-113766&rft.artnum=113766&rft.issn=0014-4827&rft.eissn=1090-2422&rft_id=info:doi/10.1016/j.yexcr.2023.113766&rft_dat=%3Cproquest_cross%3E2863298212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863298212&rft_id=info:pmid/&rft_els_id=S0014482723003142&rfr_iscdi=true