Development and characterization of polydeoxyribonucleotide (PDRN) loaded chitosan polyplex: In vitro and in vivo evaluation of wound healing activity

Polydeoxyribonucleotide (PDRN) is an accelerated diabetic wound healing therapy with promising abilities to promote cell growth, angiogenesis, collagen synthesis, and reduce inflammation where its sustainable delivery and release behavior is critical to ensure effective wound healing properties. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-12, Vol.253, p.126729-126729, Article 126729
Hauptverfasser: Dananjaya, S.H.S., Madushani, K.G.P., Dilrukshi, Jeewani, De Silva, Nayomi D., Sandamalika, W.M. Gayashani, Kim, Dukgyu, Choi, Dongrack, De Zoysa, Mahanama, Attanayake, Anoja P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polydeoxyribonucleotide (PDRN) is an accelerated diabetic wound healing therapy with promising abilities to promote cell growth, angiogenesis, collagen synthesis, and reduce inflammation where its sustainable delivery and release behavior is critical to ensure effective wound healing properties. Therefore, a nanopolyplex was developed here, by encapsulating PDRN with chitosan to affirm its delivery systematically. The physicochemical characterization revealed its successful encapsulation which facilitates the gradual release of PDRN. In vitro studies of the polyplex demonstrated no cytotoxicity and enhanced cell proliferation and migration properties with high antimicrobial activities. In vivo, wound healing studies in Wistar rats dorsal skin defect model induced with diabetes mellitus affirm the highest wound healing activity and wound closure rate by chitosan/PDRN polyplex treatment. Considerably high histopathological changes such as epithelialization, collagen deposition, blood vessels, and hair follicle formation were observed under the polyplex treatment. The immunohistochemical analysis for platelet endothelial cell adhesion molecule (CD31) and cluster of differentiation (CD68) revealed the ability of polyplex to increase CD31 expression and decrease CD68 expression thereby promoting the wound healing process. Collectively, these results suggest that significantly accelerated, high-quality wound healing effects could be obtained by the developed chitosan/PDRN polyplex and thus it could be introduced as a potential therapeutic product for diabetic wound healing.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.126729