Preparation of SOFC anode composites by spray pyrolysis

Lowering the SOFC working temperature would also be greatly attractive, but low temperature working SOFCs require high-performance anodes. The cermet SOFC anodes, which are composed of nickel and samarium doped ceria, were prepared by spray pyrolysis (SP), because SP produces spherical particles wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Ceramic Society 2006, Vol.26 (4), p.593-597
Hauptverfasser: Suda, Seiichi, Itagaki, Mikio, Node, Eri, Takahashi, Seiji, Kawano, Mitsunobu, Yoshida, Hiroyuki, Inagaki, Toru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 597
container_issue 4
container_start_page 593
container_title Journal of the European Ceramic Society
container_volume 26
creator Suda, Seiichi
Itagaki, Mikio
Node, Eri
Takahashi, Seiji
Kawano, Mitsunobu
Yoshida, Hiroyuki
Inagaki, Toru
description Lowering the SOFC working temperature would also be greatly attractive, but low temperature working SOFCs require high-performance anodes. The cermet SOFC anodes, which are composed of nickel and samarium doped ceria, were prepared by spray pyrolysis (SP), because SP produces spherical particles with small size distributions. SP-derived particles of NiO, SDC, and NiO/SDC composite had a round shape and comprised nanometer-sized primary grains. The cermet anodes were prepared by using SP-derived NiO/SDC composite particles or mixing SP-derived NiO and SDC particles. The anode prepared with the composite particles showed higher SOFC cell performance than that with the mixed ones. The composite particles had high surface areas and a capsule-type form. The outer shell would be composed of SDC and the inner core was NiO. The capsule-type composite particles would depress aggregation of Ni or NiO during reduction from NiO to Ni metals, and this depression would enhance SOFC anode performance.
doi_str_mv 10.1016/j.jeurceramsoc.2005.07.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28629948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955221905006217</els_id><sourcerecordid>28629948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-6f43c1516e81d16c2dc1055aaec9c743f3f89ac04b3c960fc78bb3ead3bc18163</originalsourceid><addsrcrecordid>eNqNkE1LxDAURYMoOI7-hyLorjVp-pG4k9FRYWAEFdyF9PUVMnSamtcR-u_tMIIuXb3NefdyD2OXgieCi-Jmk2xwFwCD3ZKHJOU8T3iZcKmO2EyoUsaF0B_HbMZ1nsdpKvQpOyPacC5KrvWMlS8Bexvs4HwX-SZ6XS8Xke18jRH4be_JDUhRNUbUBztG_Rh8O5Kjc3bS2Jbw4ufO2fvy4W3xFK_Wj8-Lu1UMmU6HuGgyCSIXBSpRiwLSGgTPc2sRNJSZbGSjtAWeVRJ0wRsoVVVJtLWsQChRyDm7PuT2wX_ukAazdQTYtrZDvyOTqiLVOlMTeHsAIXiigI3pg9vaMBrBzd6V2Zi_rszeleGlmVxNz1c_LZbAtk2wHTj6TShzpbnKJu7-wOE0-cthMAQOO8DaBYTB1N79p-4brRmHIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28629948</pqid></control><display><type>article</type><title>Preparation of SOFC anode composites by spray pyrolysis</title><source>Elsevier ScienceDirect Journals</source><creator>Suda, Seiichi ; Itagaki, Mikio ; Node, Eri ; Takahashi, Seiji ; Kawano, Mitsunobu ; Yoshida, Hiroyuki ; Inagaki, Toru</creator><creatorcontrib>Suda, Seiichi ; Itagaki, Mikio ; Node, Eri ; Takahashi, Seiji ; Kawano, Mitsunobu ; Yoshida, Hiroyuki ; Inagaki, Toru</creatorcontrib><description>Lowering the SOFC working temperature would also be greatly attractive, but low temperature working SOFCs require high-performance anodes. The cermet SOFC anodes, which are composed of nickel and samarium doped ceria, were prepared by spray pyrolysis (SP), because SP produces spherical particles with small size distributions. SP-derived particles of NiO, SDC, and NiO/SDC composite had a round shape and comprised nanometer-sized primary grains. The cermet anodes were prepared by using SP-derived NiO/SDC composite particles or mixing SP-derived NiO and SDC particles. The anode prepared with the composite particles showed higher SOFC cell performance than that with the mixed ones. The composite particles had high surface areas and a capsule-type form. The outer shell would be composed of SDC and the inner core was NiO. The capsule-type composite particles would depress aggregation of Ni or NiO during reduction from NiO to Ni metals, and this depression would enhance SOFC anode performance.</description><identifier>ISSN: 0955-2219</identifier><identifier>EISSN: 1873-619X</identifier><identifier>DOI: 10.1016/j.jeurceramsoc.2005.07.038</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Building materials. Ceramics. Glasses ; CeO 2 ; Ceramic industries ; Cermets, ceramic and refractory composites ; Chemical industry and chemicals ; Composites ; Cross-disciplinary physics: materials science; rheology ; Electrical properties ; Electrotechnical and electronic ceramics ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Materials science ; Other materials ; Physics ; Powders-chemical preparation ; Specific materials ; Technical ceramics</subject><ispartof>Journal of the European Ceramic Society, 2006, Vol.26 (4), p.593-597</ispartof><rights>2005 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-6f43c1516e81d16c2dc1055aaec9c743f3f89ac04b3c960fc78bb3ead3bc18163</citedby><cites>FETCH-LOGICAL-c492t-6f43c1516e81d16c2dc1055aaec9c743f3f89ac04b3c960fc78bb3ead3bc18163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0955221905006217$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,4010,4036,4037,23909,23910,25118,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17589084$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Suda, Seiichi</creatorcontrib><creatorcontrib>Itagaki, Mikio</creatorcontrib><creatorcontrib>Node, Eri</creatorcontrib><creatorcontrib>Takahashi, Seiji</creatorcontrib><creatorcontrib>Kawano, Mitsunobu</creatorcontrib><creatorcontrib>Yoshida, Hiroyuki</creatorcontrib><creatorcontrib>Inagaki, Toru</creatorcontrib><title>Preparation of SOFC anode composites by spray pyrolysis</title><title>Journal of the European Ceramic Society</title><description>Lowering the SOFC working temperature would also be greatly attractive, but low temperature working SOFCs require high-performance anodes. The cermet SOFC anodes, which are composed of nickel and samarium doped ceria, were prepared by spray pyrolysis (SP), because SP produces spherical particles with small size distributions. SP-derived particles of NiO, SDC, and NiO/SDC composite had a round shape and comprised nanometer-sized primary grains. The cermet anodes were prepared by using SP-derived NiO/SDC composite particles or mixing SP-derived NiO and SDC particles. The anode prepared with the composite particles showed higher SOFC cell performance than that with the mixed ones. The composite particles had high surface areas and a capsule-type form. The outer shell would be composed of SDC and the inner core was NiO. The capsule-type composite particles would depress aggregation of Ni or NiO during reduction from NiO to Ni metals, and this depression would enhance SOFC anode performance.</description><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>CeO 2</subject><subject>Ceramic industries</subject><subject>Cermets, ceramic and refractory composites</subject><subject>Chemical industry and chemicals</subject><subject>Composites</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrical properties</subject><subject>Electrotechnical and electronic ceramics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Materials science</subject><subject>Other materials</subject><subject>Physics</subject><subject>Powders-chemical preparation</subject><subject>Specific materials</subject><subject>Technical ceramics</subject><issn>0955-2219</issn><issn>1873-619X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAURYMoOI7-hyLorjVp-pG4k9FRYWAEFdyF9PUVMnSamtcR-u_tMIIuXb3NefdyD2OXgieCi-Jmk2xwFwCD3ZKHJOU8T3iZcKmO2EyoUsaF0B_HbMZ1nsdpKvQpOyPacC5KrvWMlS8Bexvs4HwX-SZ6XS8Xke18jRH4be_JDUhRNUbUBztG_Rh8O5Kjc3bS2Jbw4ufO2fvy4W3xFK_Wj8-Lu1UMmU6HuGgyCSIXBSpRiwLSGgTPc2sRNJSZbGSjtAWeVRJ0wRsoVVVJtLWsQChRyDm7PuT2wX_ukAazdQTYtrZDvyOTqiLVOlMTeHsAIXiigI3pg9vaMBrBzd6V2Zi_rszeleGlmVxNz1c_LZbAtk2wHTj6TShzpbnKJu7-wOE0-cthMAQOO8DaBYTB1N79p-4brRmHIA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Suda, Seiichi</creator><creator>Itagaki, Mikio</creator><creator>Node, Eri</creator><creator>Takahashi, Seiji</creator><creator>Kawano, Mitsunobu</creator><creator>Yoshida, Hiroyuki</creator><creator>Inagaki, Toru</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2006</creationdate><title>Preparation of SOFC anode composites by spray pyrolysis</title><author>Suda, Seiichi ; Itagaki, Mikio ; Node, Eri ; Takahashi, Seiji ; Kawano, Mitsunobu ; Yoshida, Hiroyuki ; Inagaki, Toru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-6f43c1516e81d16c2dc1055aaec9c743f3f89ac04b3c960fc78bb3ead3bc18163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>CeO 2</topic><topic>Ceramic industries</topic><topic>Cermets, ceramic and refractory composites</topic><topic>Chemical industry and chemicals</topic><topic>Composites</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrical properties</topic><topic>Electrotechnical and electronic ceramics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Materials science</topic><topic>Other materials</topic><topic>Physics</topic><topic>Powders-chemical preparation</topic><topic>Specific materials</topic><topic>Technical ceramics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suda, Seiichi</creatorcontrib><creatorcontrib>Itagaki, Mikio</creatorcontrib><creatorcontrib>Node, Eri</creatorcontrib><creatorcontrib>Takahashi, Seiji</creatorcontrib><creatorcontrib>Kawano, Mitsunobu</creatorcontrib><creatorcontrib>Yoshida, Hiroyuki</creatorcontrib><creatorcontrib>Inagaki, Toru</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the European Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suda, Seiichi</au><au>Itagaki, Mikio</au><au>Node, Eri</au><au>Takahashi, Seiji</au><au>Kawano, Mitsunobu</au><au>Yoshida, Hiroyuki</au><au>Inagaki, Toru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of SOFC anode composites by spray pyrolysis</atitle><jtitle>Journal of the European Ceramic Society</jtitle><date>2006</date><risdate>2006</risdate><volume>26</volume><issue>4</issue><spage>593</spage><epage>597</epage><pages>593-597</pages><issn>0955-2219</issn><eissn>1873-619X</eissn><abstract>Lowering the SOFC working temperature would also be greatly attractive, but low temperature working SOFCs require high-performance anodes. The cermet SOFC anodes, which are composed of nickel and samarium doped ceria, were prepared by spray pyrolysis (SP), because SP produces spherical particles with small size distributions. SP-derived particles of NiO, SDC, and NiO/SDC composite had a round shape and comprised nanometer-sized primary grains. The cermet anodes were prepared by using SP-derived NiO/SDC composite particles or mixing SP-derived NiO and SDC particles. The anode prepared with the composite particles showed higher SOFC cell performance than that with the mixed ones. The composite particles had high surface areas and a capsule-type form. The outer shell would be composed of SDC and the inner core was NiO. The capsule-type composite particles would depress aggregation of Ni or NiO during reduction from NiO to Ni metals, and this depression would enhance SOFC anode performance.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jeurceramsoc.2005.07.038</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-2219
ispartof Journal of the European Ceramic Society, 2006, Vol.26 (4), p.593-597
issn 0955-2219
1873-619X
language eng
recordid cdi_proquest_miscellaneous_28629948
source Elsevier ScienceDirect Journals
subjects Applied sciences
Building materials. Ceramics. Glasses
CeO 2
Ceramic industries
Cermets, ceramic and refractory composites
Chemical industry and chemicals
Composites
Cross-disciplinary physics: materials science
rheology
Electrical properties
Electrotechnical and electronic ceramics
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Materials science
Other materials
Physics
Powders-chemical preparation
Specific materials
Technical ceramics
title Preparation of SOFC anode composites by spray pyrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20SOFC%20anode%20composites%20by%20spray%20pyrolysis&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.au=Suda,%20Seiichi&rft.date=2006&rft.volume=26&rft.issue=4&rft.spage=593&rft.epage=597&rft.pages=593-597&rft.issn=0955-2219&rft.eissn=1873-619X&rft_id=info:doi/10.1016/j.jeurceramsoc.2005.07.038&rft_dat=%3Cproquest_cross%3E28629948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28629948&rft_id=info:pmid/&rft_els_id=S0955221905006217&rfr_iscdi=true