A trainable transparent universal approximator for defuzzification in Mamdani-type neuro-fuzzy controllers

A novel technique of designing application specific defuzzification strategies with neural learning is presented. The proposed neural architecture considered as a universal defuzzification approximator is validated by showing the convergence when approximating several existing defuzzification strate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 1998-05, Vol.6 (2), p.304-314
1. Verfasser: Halgamuge, S.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 2
container_start_page 304
container_title IEEE transactions on fuzzy systems
container_volume 6
creator Halgamuge, S.K.
description A novel technique of designing application specific defuzzification strategies with neural learning is presented. The proposed neural architecture considered as a universal defuzzification approximator is validated by showing the convergence when approximating several existing defuzzification strategies. The method is successfully tested with fuzzy controlled reverse driving of a model truck. The transparent structure of the universal defuzzification approximator allows us to analyze the generated customized defuzzification method using the existing theories of defuzzification. The integration of universal defuzzification approximator instead of traditional methods in Mamdani-type fuzzy controllers can also be considered as an addition of trainable nonlinear noise to the output of the fuzzy rule inference before calculating the defuzzified crisp output. Therefore, nonlinear noise trained specifically for a given application shows a grade of confidence on the rule base, providing an additional opportunity to measure the quality of the fuzzy rule base. The possibility of modeling a Mamdani-type fuzzy controller as a feedforward neural network with the ability of gradient descent training of the universal defuzzification approximator and antecedent membership functions fulfil the requirement known from multilayer preceptrons in finding solutions to nonlinear separable problems.
doi_str_mv 10.1109/91.669031
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28628060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>669031</ieee_id><sourcerecordid>28628060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-fd0751ef8876ace071d728d07e2ceed2ec4a35b133fb284584ce810efaefab013</originalsourceid><addsrcrecordid>eNo9kE1rwzAMhs3YYF23w647-TTYIZ2VpI5zLGVf0LHLdg6OI4NLame2M9b--rmkDCT0Ij28SCLkFtgCgNWPNSw4r1kBZ2QGdQkZY0V5njTjRcYrxi_JVQhbxqBcgpiR7YpGL42VbY9HZcMgPdpIR2t-0AfZUzkM3v2anYzOU52yQz0eDkYbJaNxlhpL3-Wuk9ZkcT8gtTh6lx2ZPVXORu_6Plldkwst-4A3pzonX89Pn-vXbPPx8rZebTKVV1XMdMeqJaAWouJSIaugq3KRmpgrxC5HVcpi2UJR6DYX5VKUCgUw1DJFy6CYk_vJN639PWKIzc4EhX0vLboxNLnguWCcJfBhApV3IXjUzeDTmX7fAGuO32xqaKZvJvZuYg0i_nOn4R9W1XMT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28628060</pqid></control><display><type>article</type><title>A trainable transparent universal approximator for defuzzification in Mamdani-type neuro-fuzzy controllers</title><source>IEEE Electronic Library (IEL)</source><creator>Halgamuge, S.K.</creator><creatorcontrib>Halgamuge, S.K.</creatorcontrib><description>A novel technique of designing application specific defuzzification strategies with neural learning is presented. The proposed neural architecture considered as a universal defuzzification approximator is validated by showing the convergence when approximating several existing defuzzification strategies. The method is successfully tested with fuzzy controlled reverse driving of a model truck. The transparent structure of the universal defuzzification approximator allows us to analyze the generated customized defuzzification method using the existing theories of defuzzification. The integration of universal defuzzification approximator instead of traditional methods in Mamdani-type fuzzy controllers can also be considered as an addition of trainable nonlinear noise to the output of the fuzzy rule inference before calculating the defuzzified crisp output. Therefore, nonlinear noise trained specifically for a given application shows a grade of confidence on the rule base, providing an additional opportunity to measure the quality of the fuzzy rule base. The possibility of modeling a Mamdani-type fuzzy controller as a feedforward neural network with the ability of gradient descent training of the universal defuzzification approximator and antecedent membership functions fulfil the requirement known from multilayer preceptrons in finding solutions to nonlinear separable problems.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/91.669031</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Function approximation ; Fuzzy control ; Fuzzy neural networks ; Fuzzy systems ; Gravity ; Mechatronics ; Multi-layer neural network ; Neural networks ; Testing</subject><ispartof>IEEE transactions on fuzzy systems, 1998-05, Vol.6 (2), p.304-314</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-fd0751ef8876ace071d728d07e2ceed2ec4a35b133fb284584ce810efaefab013</citedby><cites>FETCH-LOGICAL-c277t-fd0751ef8876ace071d728d07e2ceed2ec4a35b133fb284584ce810efaefab013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/669031$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/669031$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Halgamuge, S.K.</creatorcontrib><title>A trainable transparent universal approximator for defuzzification in Mamdani-type neuro-fuzzy controllers</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>A novel technique of designing application specific defuzzification strategies with neural learning is presented. The proposed neural architecture considered as a universal defuzzification approximator is validated by showing the convergence when approximating several existing defuzzification strategies. The method is successfully tested with fuzzy controlled reverse driving of a model truck. The transparent structure of the universal defuzzification approximator allows us to analyze the generated customized defuzzification method using the existing theories of defuzzification. The integration of universal defuzzification approximator instead of traditional methods in Mamdani-type fuzzy controllers can also be considered as an addition of trainable nonlinear noise to the output of the fuzzy rule inference before calculating the defuzzified crisp output. Therefore, nonlinear noise trained specifically for a given application shows a grade of confidence on the rule base, providing an additional opportunity to measure the quality of the fuzzy rule base. The possibility of modeling a Mamdani-type fuzzy controller as a feedforward neural network with the ability of gradient descent training of the universal defuzzification approximator and antecedent membership functions fulfil the requirement known from multilayer preceptrons in finding solutions to nonlinear separable problems.</description><subject>Convergence</subject><subject>Function approximation</subject><subject>Fuzzy control</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy systems</subject><subject>Gravity</subject><subject>Mechatronics</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Testing</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rwzAMhs3YYF23w647-TTYIZ2VpI5zLGVf0LHLdg6OI4NLame2M9b--rmkDCT0Ij28SCLkFtgCgNWPNSw4r1kBZ2QGdQkZY0V5njTjRcYrxi_JVQhbxqBcgpiR7YpGL42VbY9HZcMgPdpIR2t-0AfZUzkM3v2anYzOU52yQz0eDkYbJaNxlhpL3-Wuk9ZkcT8gtTh6lx2ZPVXORu_6Plldkwst-4A3pzonX89Pn-vXbPPx8rZebTKVV1XMdMeqJaAWouJSIaugq3KRmpgrxC5HVcpi2UJR6DYX5VKUCgUw1DJFy6CYk_vJN639PWKIzc4EhX0vLboxNLnguWCcJfBhApV3IXjUzeDTmX7fAGuO32xqaKZvJvZuYg0i_nOn4R9W1XMT</recordid><startdate>19980501</startdate><enddate>19980501</enddate><creator>Halgamuge, S.K.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980501</creationdate><title>A trainable transparent universal approximator for defuzzification in Mamdani-type neuro-fuzzy controllers</title><author>Halgamuge, S.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-fd0751ef8876ace071d728d07e2ceed2ec4a35b133fb284584ce810efaefab013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Convergence</topic><topic>Function approximation</topic><topic>Fuzzy control</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy systems</topic><topic>Gravity</topic><topic>Mechatronics</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halgamuge, S.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Halgamuge, S.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A trainable transparent universal approximator for defuzzification in Mamdani-type neuro-fuzzy controllers</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>1998-05-01</date><risdate>1998</risdate><volume>6</volume><issue>2</issue><spage>304</spage><epage>314</epage><pages>304-314</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>A novel technique of designing application specific defuzzification strategies with neural learning is presented. The proposed neural architecture considered as a universal defuzzification approximator is validated by showing the convergence when approximating several existing defuzzification strategies. The method is successfully tested with fuzzy controlled reverse driving of a model truck. The transparent structure of the universal defuzzification approximator allows us to analyze the generated customized defuzzification method using the existing theories of defuzzification. The integration of universal defuzzification approximator instead of traditional methods in Mamdani-type fuzzy controllers can also be considered as an addition of trainable nonlinear noise to the output of the fuzzy rule inference before calculating the defuzzified crisp output. Therefore, nonlinear noise trained specifically for a given application shows a grade of confidence on the rule base, providing an additional opportunity to measure the quality of the fuzzy rule base. The possibility of modeling a Mamdani-type fuzzy controller as a feedforward neural network with the ability of gradient descent training of the universal defuzzification approximator and antecedent membership functions fulfil the requirement known from multilayer preceptrons in finding solutions to nonlinear separable problems.</abstract><pub>IEEE</pub><doi>10.1109/91.669031</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 1998-05, Vol.6 (2), p.304-314
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_miscellaneous_28628060
source IEEE Electronic Library (IEL)
subjects Convergence
Function approximation
Fuzzy control
Fuzzy neural networks
Fuzzy systems
Gravity
Mechatronics
Multi-layer neural network
Neural networks
Testing
title A trainable transparent universal approximator for defuzzification in Mamdani-type neuro-fuzzy controllers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20trainable%20transparent%20universal%20approximator%20for%20defuzzification%20in%20Mamdani-type%20neuro-fuzzy%20controllers&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Halgamuge,%20S.K.&rft.date=1998-05-01&rft.volume=6&rft.issue=2&rft.spage=304&rft.epage=314&rft.pages=304-314&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/91.669031&rft_dat=%3Cproquest_RIE%3E28628060%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28628060&rft_id=info:pmid/&rft_ieee_id=669031&rfr_iscdi=true