Estimation of the information by an adaptive partitioning of the observation space

We demonstrate that it is possible to approximate the mutual information arbitrarily closely in probability by calculating the relative frequencies on appropriate partitions and achieving conditional independence on the rectangles of which the partitions are made. Empirical results, including a comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1999-05, Vol.45 (4), p.1315-1321
Hauptverfasser: Darbellay, G.A., Vajda, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1321
container_issue 4
container_start_page 1315
container_title IEEE transactions on information theory
container_volume 45
creator Darbellay, G.A.
Vajda, I.
description We demonstrate that it is possible to approximate the mutual information arbitrarily closely in probability by calculating the relative frequencies on appropriate partitions and achieving conditional independence on the rectangles of which the partitions are made. Empirical results, including a comparison with maximum-likelihood estimators, are presented.
doi_str_mv 10.1109/18.761290
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28626523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>761290</ieee_id><sourcerecordid>919917098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-25da1133007ce87df5a592c8c2994b437b211a81029591a73e37f3d1207280743</originalsourceid><addsrcrecordid>eNp90c1LwzAUAPAgCs7pwaun4kHx0JmXjyY5ypgfMBBEzyFtU83Ympp0g_33y-j04MFTeHk_Hu8DoUvAEwCs7kFORAFE4SM0As5FrgrOjtEIY5C5YkyeorMYFylkHMgIvc1i71amd77NfJP1XzZzbePD4avcZqbNTG263m1s1pnQu33CtZ8_3JfRhs3AY2cqe45OGrOM9uLwjtHH4-x9-pzPX59epg_zvGKY9DnhtQGgFGNRWSnqhhuuSCUrohQrGRUlATASMFFcgRHUUtHQGggWRGLB6BjdDnW74L_XNvZ65WJll0vTWr-OWoFSILCSSd78K4ksSMEJTfD6D1z4dWjTFBpSF4RTJRK6G1AVfIzBNroLaYVhqwHr_RE0SD0cIdmrwTpr7a87JHfR1X97</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195925397</pqid></control><display><type>article</type><title>Estimation of the information by an adaptive partitioning of the observation space</title><source>IEEE Electronic Library (IEL)</source><creator>Darbellay, G.A. ; Vajda, I.</creator><creatorcontrib>Darbellay, G.A. ; Vajda, I.</creatorcontrib><description>We demonstrate that it is possible to approximate the mutual information arbitrarily closely in probability by calculating the relative frequencies on appropriate partitions and achieving conditional independence on the rectangles of which the partitions are made. Empirical results, including a comparison with maximum-likelihood estimators, are presented.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.761290</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Density measurement ; Electrical engineering ; Empirical analysis ; Entropy ; Estimators ; Frequency ; Histograms ; Information theory ; Mathematical analysis ; Maximum likelihood estimation ; Multidimensional systems ; Mutual information ; Partitioning ; Partitions ; Probability ; Random variables ; Rectangles</subject><ispartof>IEEE transactions on information theory, 1999-05, Vol.45 (4), p.1315-1321</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-25da1133007ce87df5a592c8c2994b437b211a81029591a73e37f3d1207280743</citedby><cites>FETCH-LOGICAL-c402t-25da1133007ce87df5a592c8c2994b437b211a81029591a73e37f3d1207280743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/761290$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/761290$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Darbellay, G.A.</creatorcontrib><creatorcontrib>Vajda, I.</creatorcontrib><title>Estimation of the information by an adaptive partitioning of the observation space</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We demonstrate that it is possible to approximate the mutual information arbitrarily closely in probability by calculating the relative frequencies on appropriate partitions and achieving conditional independence on the rectangles of which the partitions are made. Empirical results, including a comparison with maximum-likelihood estimators, are presented.</description><subject>Approximation</subject><subject>Density measurement</subject><subject>Electrical engineering</subject><subject>Empirical analysis</subject><subject>Entropy</subject><subject>Estimators</subject><subject>Frequency</subject><subject>Histograms</subject><subject>Information theory</subject><subject>Mathematical analysis</subject><subject>Maximum likelihood estimation</subject><subject>Multidimensional systems</subject><subject>Mutual information</subject><subject>Partitioning</subject><subject>Partitions</subject><subject>Probability</subject><subject>Random variables</subject><subject>Rectangles</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90c1LwzAUAPAgCs7pwaun4kHx0JmXjyY5ypgfMBBEzyFtU83Ympp0g_33y-j04MFTeHk_Hu8DoUvAEwCs7kFORAFE4SM0As5FrgrOjtEIY5C5YkyeorMYFylkHMgIvc1i71amd77NfJP1XzZzbePD4avcZqbNTG263m1s1pnQu33CtZ8_3JfRhs3AY2cqe45OGrOM9uLwjtHH4-x9-pzPX59epg_zvGKY9DnhtQGgFGNRWSnqhhuuSCUrohQrGRUlATASMFFcgRHUUtHQGggWRGLB6BjdDnW74L_XNvZ65WJll0vTWr-OWoFSILCSSd78K4ksSMEJTfD6D1z4dWjTFBpSF4RTJRK6G1AVfIzBNroLaYVhqwHr_RE0SD0cIdmrwTpr7a87JHfR1X97</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Darbellay, G.A.</creator><creator>Vajda, I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19990501</creationdate><title>Estimation of the information by an adaptive partitioning of the observation space</title><author>Darbellay, G.A. ; Vajda, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-25da1133007ce87df5a592c8c2994b437b211a81029591a73e37f3d1207280743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Approximation</topic><topic>Density measurement</topic><topic>Electrical engineering</topic><topic>Empirical analysis</topic><topic>Entropy</topic><topic>Estimators</topic><topic>Frequency</topic><topic>Histograms</topic><topic>Information theory</topic><topic>Mathematical analysis</topic><topic>Maximum likelihood estimation</topic><topic>Multidimensional systems</topic><topic>Mutual information</topic><topic>Partitioning</topic><topic>Partitions</topic><topic>Probability</topic><topic>Random variables</topic><topic>Rectangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darbellay, G.A.</creatorcontrib><creatorcontrib>Vajda, I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Darbellay, G.A.</au><au>Vajda, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the information by an adaptive partitioning of the observation space</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1999-05-01</date><risdate>1999</risdate><volume>45</volume><issue>4</issue><spage>1315</spage><epage>1321</epage><pages>1315-1321</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We demonstrate that it is possible to approximate the mutual information arbitrarily closely in probability by calculating the relative frequencies on appropriate partitions and achieving conditional independence on the rectangles of which the partitions are made. Empirical results, including a comparison with maximum-likelihood estimators, are presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/18.761290</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1999-05, Vol.45 (4), p.1315-1321
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_28626523
source IEEE Electronic Library (IEL)
subjects Approximation
Density measurement
Electrical engineering
Empirical analysis
Entropy
Estimators
Frequency
Histograms
Information theory
Mathematical analysis
Maximum likelihood estimation
Multidimensional systems
Mutual information
Partitioning
Partitions
Probability
Random variables
Rectangles
title Estimation of the information by an adaptive partitioning of the observation space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20information%20by%20an%20adaptive%20partitioning%20of%20the%20observation%20space&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Darbellay,%20G.A.&rft.date=1999-05-01&rft.volume=45&rft.issue=4&rft.spage=1315&rft.epage=1321&rft.pages=1315-1321&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.761290&rft_dat=%3Cproquest_RIE%3E919917098%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195925397&rft_id=info:pmid/&rft_ieee_id=761290&rfr_iscdi=true