Estimation of the information by an adaptive partitioning of the observation space
We demonstrate that it is possible to approximate the mutual information arbitrarily closely in probability by calculating the relative frequencies on appropriate partitions and achieving conditional independence on the rectangles of which the partitions are made. Empirical results, including a comp...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 1999-05, Vol.45 (4), p.1315-1321 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1321 |
---|---|
container_issue | 4 |
container_start_page | 1315 |
container_title | IEEE transactions on information theory |
container_volume | 45 |
creator | Darbellay, G.A. Vajda, I. |
description | We demonstrate that it is possible to approximate the mutual information arbitrarily closely in probability by calculating the relative frequencies on appropriate partitions and achieving conditional independence on the rectangles of which the partitions are made. Empirical results, including a comparison with maximum-likelihood estimators, are presented. |
doi_str_mv | 10.1109/18.761290 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28626523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>761290</ieee_id><sourcerecordid>919917098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-25da1133007ce87df5a592c8c2994b437b211a81029591a73e37f3d1207280743</originalsourceid><addsrcrecordid>eNp90c1LwzAUAPAgCs7pwaun4kHx0JmXjyY5ypgfMBBEzyFtU83Ympp0g_33y-j04MFTeHk_Hu8DoUvAEwCs7kFORAFE4SM0As5FrgrOjtEIY5C5YkyeorMYFylkHMgIvc1i71amd77NfJP1XzZzbePD4avcZqbNTG263m1s1pnQu33CtZ8_3JfRhs3AY2cqe45OGrOM9uLwjtHH4-x9-pzPX59epg_zvGKY9DnhtQGgFGNRWSnqhhuuSCUrohQrGRUlATASMFFcgRHUUtHQGggWRGLB6BjdDnW74L_XNvZ65WJll0vTWr-OWoFSILCSSd78K4ksSMEJTfD6D1z4dWjTFBpSF4RTJRK6G1AVfIzBNroLaYVhqwHr_RE0SD0cIdmrwTpr7a87JHfR1X97</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195925397</pqid></control><display><type>article</type><title>Estimation of the information by an adaptive partitioning of the observation space</title><source>IEEE Electronic Library (IEL)</source><creator>Darbellay, G.A. ; Vajda, I.</creator><creatorcontrib>Darbellay, G.A. ; Vajda, I.</creatorcontrib><description>We demonstrate that it is possible to approximate the mutual information arbitrarily closely in probability by calculating the relative frequencies on appropriate partitions and achieving conditional independence on the rectangles of which the partitions are made. Empirical results, including a comparison with maximum-likelihood estimators, are presented.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.761290</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Density measurement ; Electrical engineering ; Empirical analysis ; Entropy ; Estimators ; Frequency ; Histograms ; Information theory ; Mathematical analysis ; Maximum likelihood estimation ; Multidimensional systems ; Mutual information ; Partitioning ; Partitions ; Probability ; Random variables ; Rectangles</subject><ispartof>IEEE transactions on information theory, 1999-05, Vol.45 (4), p.1315-1321</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-25da1133007ce87df5a592c8c2994b437b211a81029591a73e37f3d1207280743</citedby><cites>FETCH-LOGICAL-c402t-25da1133007ce87df5a592c8c2994b437b211a81029591a73e37f3d1207280743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/761290$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/761290$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Darbellay, G.A.</creatorcontrib><creatorcontrib>Vajda, I.</creatorcontrib><title>Estimation of the information by an adaptive partitioning of the observation space</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We demonstrate that it is possible to approximate the mutual information arbitrarily closely in probability by calculating the relative frequencies on appropriate partitions and achieving conditional independence on the rectangles of which the partitions are made. Empirical results, including a comparison with maximum-likelihood estimators, are presented.</description><subject>Approximation</subject><subject>Density measurement</subject><subject>Electrical engineering</subject><subject>Empirical analysis</subject><subject>Entropy</subject><subject>Estimators</subject><subject>Frequency</subject><subject>Histograms</subject><subject>Information theory</subject><subject>Mathematical analysis</subject><subject>Maximum likelihood estimation</subject><subject>Multidimensional systems</subject><subject>Mutual information</subject><subject>Partitioning</subject><subject>Partitions</subject><subject>Probability</subject><subject>Random variables</subject><subject>Rectangles</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90c1LwzAUAPAgCs7pwaun4kHx0JmXjyY5ypgfMBBEzyFtU83Ympp0g_33y-j04MFTeHk_Hu8DoUvAEwCs7kFORAFE4SM0As5FrgrOjtEIY5C5YkyeorMYFylkHMgIvc1i71amd77NfJP1XzZzbePD4avcZqbNTG263m1s1pnQu33CtZ8_3JfRhs3AY2cqe45OGrOM9uLwjtHH4-x9-pzPX59epg_zvGKY9DnhtQGgFGNRWSnqhhuuSCUrohQrGRUlATASMFFcgRHUUtHQGggWRGLB6BjdDnW74L_XNvZ65WJll0vTWr-OWoFSILCSSd78K4ksSMEJTfD6D1z4dWjTFBpSF4RTJRK6G1AVfIzBNroLaYVhqwHr_RE0SD0cIdmrwTpr7a87JHfR1X97</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Darbellay, G.A.</creator><creator>Vajda, I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19990501</creationdate><title>Estimation of the information by an adaptive partitioning of the observation space</title><author>Darbellay, G.A. ; Vajda, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-25da1133007ce87df5a592c8c2994b437b211a81029591a73e37f3d1207280743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Approximation</topic><topic>Density measurement</topic><topic>Electrical engineering</topic><topic>Empirical analysis</topic><topic>Entropy</topic><topic>Estimators</topic><topic>Frequency</topic><topic>Histograms</topic><topic>Information theory</topic><topic>Mathematical analysis</topic><topic>Maximum likelihood estimation</topic><topic>Multidimensional systems</topic><topic>Mutual information</topic><topic>Partitioning</topic><topic>Partitions</topic><topic>Probability</topic><topic>Random variables</topic><topic>Rectangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darbellay, G.A.</creatorcontrib><creatorcontrib>Vajda, I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Darbellay, G.A.</au><au>Vajda, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the information by an adaptive partitioning of the observation space</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1999-05-01</date><risdate>1999</risdate><volume>45</volume><issue>4</issue><spage>1315</spage><epage>1321</epage><pages>1315-1321</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We demonstrate that it is possible to approximate the mutual information arbitrarily closely in probability by calculating the relative frequencies on appropriate partitions and achieving conditional independence on the rectangles of which the partitions are made. Empirical results, including a comparison with maximum-likelihood estimators, are presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/18.761290</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 1999-05, Vol.45 (4), p.1315-1321 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_miscellaneous_28626523 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation Density measurement Electrical engineering Empirical analysis Entropy Estimators Frequency Histograms Information theory Mathematical analysis Maximum likelihood estimation Multidimensional systems Mutual information Partitioning Partitions Probability Random variables Rectangles |
title | Estimation of the information by an adaptive partitioning of the observation space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20information%20by%20an%20adaptive%20partitioning%20of%20the%20observation%20space&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Darbellay,%20G.A.&rft.date=1999-05-01&rft.volume=45&rft.issue=4&rft.spage=1315&rft.epage=1321&rft.pages=1315-1321&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.761290&rft_dat=%3Cproquest_RIE%3E919917098%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195925397&rft_id=info:pmid/&rft_ieee_id=761290&rfr_iscdi=true |