Search-efficient methods of detection of cyclostationary signals

Conventional signal processing methods that exploit cyclostationarity for the detection of weak signals in noise require fine resolution in cycle frequency for long integration time. Hence, in cases of weak-signal detection and broadband search, problems in implementation, such as excessive computat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1996-05, Vol.44 (5), p.1214-1223
Hauptverfasser: Yeung, G.K., Gardner, W.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1223
container_issue 5
container_start_page 1214
container_title IEEE transactions on signal processing
container_volume 44
creator Yeung, G.K.
Gardner, W.A.
description Conventional signal processing methods that exploit cyclostationarity for the detection of weak signals in noise require fine resolution in cycle frequency for long integration time. Hence, in cases of weak-signal detection and broadband search, problems in implementation, such as excessive computational complexity and storage and search arise. This paper introduces two new search-efficient methods of cycle detection, namely the autocorrelated cyclic autocorrelation (ACA) and the autocorrelated cyclic periodogram (ACP) methods. For a given level of performance reliability, the ACA and ACP methods allow much larger resolution width in cycle frequency to be used in their implementations, compared to the conventional methods of cyclic spectral analysis. Thus, the amount of storage and search can be substantially reduced. Analyses of the two methods, performance comparison, and computer simulation results are presented.
doi_str_mv 10.1109/78.502333
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28626166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>502333</ieee_id><sourcerecordid>26390875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-277182bdeea1e9f70dcd65c59c51c07dc65f28f127ed202223ea1c7861bcfe623</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsFYPXj3lIIKH1P3IfuSmFL-g4EEFb8t2MmtX0mzNpof-9yak9OrpzWN-82AeIZeMzhij5Z02M0m5EOKITFhZsJwWWh33M5Uil0Z_nZKzlH4oZUVRqgm5f0fXwipH7wMEbLpsjd0qVimLPquwQ-hCbAYDO6hj6tzgXbvLUvhuXJ3OyYnvBS_2OiWfT48f85d88fb8On9Y5CCE7nKuNTN8WSE6hqXXtIJKSZAlSAZUV6Ck58YzrrHilHMuehC0UWwJHhUXU3Iz5m7a-LvF1Nl1SIB17RqM22S5UVwxpf4HlSip0bIHb0cQ2phSi95u2rDuX7OM2qFMq40dy-zZ632oS-Bq37oGQjocCFpqXbAeuxqxgIiH7T7jD-tie70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26390875</pqid></control><display><type>article</type><title>Search-efficient methods of detection of cyclostationary signals</title><source>IEEE Electronic Library (IEL)</source><creator>Yeung, G.K. ; Gardner, W.A.</creator><creatorcontrib>Yeung, G.K. ; Gardner, W.A.</creatorcontrib><description>Conventional signal processing methods that exploit cyclostationarity for the detection of weak signals in noise require fine resolution in cycle frequency for long integration time. Hence, in cases of weak-signal detection and broadband search, problems in implementation, such as excessive computational complexity and storage and search arise. This paper introduces two new search-efficient methods of cycle detection, namely the autocorrelated cyclic autocorrelation (ACA) and the autocorrelated cyclic periodogram (ACP) methods. For a given level of performance reliability, the ACA and ACP methods allow much larger resolution width in cycle frequency to be used in their implementations, compared to the conventional methods of cyclic spectral analysis. Thus, the amount of storage and search can be substantially reduced. Analyses of the two methods, performance comparison, and computer simulation results are presented.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.502333</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Autocorrelation ; Computational complexity ; Computer vision ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Frequency estimation ; Information, signal and communications theory ; Performance analysis ; Radiometry ; Signal and communications theory ; Signal detection ; Signal processing ; Signal resolution ; Signal, noise ; Spectral analysis ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 1996-05, Vol.44 (5), p.1214-1223</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-277182bdeea1e9f70dcd65c59c51c07dc65f28f127ed202223ea1c7861bcfe623</citedby><cites>FETCH-LOGICAL-c337t-277182bdeea1e9f70dcd65c59c51c07dc65f28f127ed202223ea1c7861bcfe623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/502333$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/502333$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3097741$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeung, G.K.</creatorcontrib><creatorcontrib>Gardner, W.A.</creatorcontrib><title>Search-efficient methods of detection of cyclostationary signals</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Conventional signal processing methods that exploit cyclostationarity for the detection of weak signals in noise require fine resolution in cycle frequency for long integration time. Hence, in cases of weak-signal detection and broadband search, problems in implementation, such as excessive computational complexity and storage and search arise. This paper introduces two new search-efficient methods of cycle detection, namely the autocorrelated cyclic autocorrelation (ACA) and the autocorrelated cyclic periodogram (ACP) methods. For a given level of performance reliability, the ACA and ACP methods allow much larger resolution width in cycle frequency to be used in their implementations, compared to the conventional methods of cyclic spectral analysis. Thus, the amount of storage and search can be substantially reduced. Analyses of the two methods, performance comparison, and computer simulation results are presented.</description><subject>Applied sciences</subject><subject>Autocorrelation</subject><subject>Computational complexity</subject><subject>Computer vision</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Frequency estimation</subject><subject>Information, signal and communications theory</subject><subject>Performance analysis</subject><subject>Radiometry</subject><subject>Signal and communications theory</subject><subject>Signal detection</subject><subject>Signal processing</subject><subject>Signal resolution</subject><subject>Signal, noise</subject><subject>Spectral analysis</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRsFYPXj3lIIKH1P3IfuSmFL-g4EEFb8t2MmtX0mzNpof-9yak9OrpzWN-82AeIZeMzhij5Z02M0m5EOKITFhZsJwWWh33M5Uil0Z_nZKzlH4oZUVRqgm5f0fXwipH7wMEbLpsjd0qVimLPquwQ-hCbAYDO6hj6tzgXbvLUvhuXJ3OyYnvBS_2OiWfT48f85d88fb8On9Y5CCE7nKuNTN8WSE6hqXXtIJKSZAlSAZUV6Ck58YzrrHilHMuehC0UWwJHhUXU3Iz5m7a-LvF1Nl1SIB17RqM22S5UVwxpf4HlSip0bIHb0cQ2phSi95u2rDuX7OM2qFMq40dy-zZ632oS-Bq37oGQjocCFpqXbAeuxqxgIiH7T7jD-tie70</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Yeung, G.K.</creator><creator>Gardner, W.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960501</creationdate><title>Search-efficient methods of detection of cyclostationary signals</title><author>Yeung, G.K. ; Gardner, W.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-277182bdeea1e9f70dcd65c59c51c07dc65f28f127ed202223ea1c7861bcfe623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Autocorrelation</topic><topic>Computational complexity</topic><topic>Computer vision</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Frequency estimation</topic><topic>Information, signal and communications theory</topic><topic>Performance analysis</topic><topic>Radiometry</topic><topic>Signal and communications theory</topic><topic>Signal detection</topic><topic>Signal processing</topic><topic>Signal resolution</topic><topic>Signal, noise</topic><topic>Spectral analysis</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeung, G.K.</creatorcontrib><creatorcontrib>Gardner, W.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yeung, G.K.</au><au>Gardner, W.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Search-efficient methods of detection of cyclostationary signals</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1996-05-01</date><risdate>1996</risdate><volume>44</volume><issue>5</issue><spage>1214</spage><epage>1223</epage><pages>1214-1223</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Conventional signal processing methods that exploit cyclostationarity for the detection of weak signals in noise require fine resolution in cycle frequency for long integration time. Hence, in cases of weak-signal detection and broadband search, problems in implementation, such as excessive computational complexity and storage and search arise. This paper introduces two new search-efficient methods of cycle detection, namely the autocorrelated cyclic autocorrelation (ACA) and the autocorrelated cyclic periodogram (ACP) methods. For a given level of performance reliability, the ACA and ACP methods allow much larger resolution width in cycle frequency to be used in their implementations, compared to the conventional methods of cyclic spectral analysis. Thus, the amount of storage and search can be substantially reduced. Analyses of the two methods, performance comparison, and computer simulation results are presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.502333</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1996-05, Vol.44 (5), p.1214-1223
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_28626166
source IEEE Electronic Library (IEL)
subjects Applied sciences
Autocorrelation
Computational complexity
Computer vision
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Frequency estimation
Information, signal and communications theory
Performance analysis
Radiometry
Signal and communications theory
Signal detection
Signal processing
Signal resolution
Signal, noise
Spectral analysis
Telecommunications and information theory
title Search-efficient methods of detection of cyclostationary signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Search-efficient%20methods%20of%20detection%20of%20cyclostationary%20signals&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Yeung,%20G.K.&rft.date=1996-05-01&rft.volume=44&rft.issue=5&rft.spage=1214&rft.epage=1223&rft.pages=1214-1223&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.502333&rft_dat=%3Cproquest_RIE%3E26390875%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26390875&rft_id=info:pmid/&rft_ieee_id=502333&rfr_iscdi=true