A MATLAB implementation of upwind finite differences and adaptive grids in the method of lines
In this paper, we report on the development of a MATLAB library for the solution of partial differential equation systems following the method of lines. In particular, we focus attention on upwind finite difference schemes and grid adaptivity, i.e., grid movement or grid refinement. Several algorith...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2005-11, Vol.183 (2), p.245-258 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 258 |
---|---|
container_issue | 2 |
container_start_page | 245 |
container_title | Journal of computational and applied mathematics |
container_volume | 183 |
creator | Wouwer, A. Vande Saucez, P. Schiesser, W.E. Thompson, S. |
description | In this paper, we report on the development of a MATLAB library for the solution of partial differential equation systems following the method of lines. In particular, we focus attention on upwind finite difference schemes and grid adaptivity, i.e., grid movement or grid refinement. Several algorithms are presented and their performance is demonstrated with illustrative examples including a fixed-bed reactor with periodic flow reversal, a model of flame propagation, and the Korteweg–de Vries equation. |
doi_str_mv | 10.1016/j.cam.2004.12.030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28625793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042705000634</els_id><sourcerecordid>28558443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-1c6261426419c688fd046027a9a8943167418d47ef26e553d8f35d20baf6e49c3</originalsourceid><addsrcrecordid>eNqNkE1v1DAURS0EEkPbH8DOG9glPDuO7YjVUJUPaVA3ZVvL2M_Uo8QJtqeIf0-iqcQOsXrS1bn3SYeQ1wxaBky-O7bOTi0HEC3jLXTwjOyYVkPDlNLPyQ46pRoQXL0kr0o5AoAcmNiR-z39ur877D_QOC0jTpiqrXFOdA70tPyKydMQU6xIfQwBMyaHhdo1tt4uNT4i_ZGjLzQmWh-QTlgfZr-1x5iwXJIXwY4Fr57uBfn28ebu-nNzuP305Xp_aFynh9owJ7lkgkvBBie1Dh6EBK7sYPUgOiaVYNoLhYFL7PvO69D1nsN3GySKwXUX5O15d8nzzxOWaqZYHI6jTTifiuFa8l4N3X-Afa-F2EB2Bl2eS8kYzJLjZPNvw8Bsys3RrMrNptwwblbla-fN07gtzo4h2-Ri-VtUAIrzbfv9mcNVyWPEbIqLm1kfM7pq_Bz_8eUPnN6UiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28558443</pqid></control><display><type>article</type><title>A MATLAB implementation of upwind finite differences and adaptive grids in the method of lines</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wouwer, A. Vande ; Saucez, P. ; Schiesser, W.E. ; Thompson, S.</creator><creatorcontrib>Wouwer, A. Vande ; Saucez, P. ; Schiesser, W.E. ; Thompson, S.</creatorcontrib><description>In this paper, we report on the development of a MATLAB library for the solution of partial differential equation systems following the method of lines. In particular, we focus attention on upwind finite difference schemes and grid adaptivity, i.e., grid movement or grid refinement. Several algorithms are presented and their performance is demonstrated with illustrative examples including a fixed-bed reactor with periodic flow reversal, a model of flame propagation, and the Korteweg–de Vries equation.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2004.12.030</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catalytic combustion ; Exact sciences and technology ; Flame propagation ; Grid refinement ; Korteweg–de Vries equation ; Mathematics ; Moving grid ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use</subject><ispartof>Journal of computational and applied mathematics, 2005-11, Vol.183 (2), p.245-258</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-1c6261426419c688fd046027a9a8943167418d47ef26e553d8f35d20baf6e49c3</citedby><cites>FETCH-LOGICAL-c389t-1c6261426419c688fd046027a9a8943167418d47ef26e553d8f35d20baf6e49c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042705000634$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17007223$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wouwer, A. Vande</creatorcontrib><creatorcontrib>Saucez, P.</creatorcontrib><creatorcontrib>Schiesser, W.E.</creatorcontrib><creatorcontrib>Thompson, S.</creatorcontrib><title>A MATLAB implementation of upwind finite differences and adaptive grids in the method of lines</title><title>Journal of computational and applied mathematics</title><description>In this paper, we report on the development of a MATLAB library for the solution of partial differential equation systems following the method of lines. In particular, we focus attention on upwind finite difference schemes and grid adaptivity, i.e., grid movement or grid refinement. Several algorithms are presented and their performance is demonstrated with illustrative examples including a fixed-bed reactor with periodic flow reversal, a model of flame propagation, and the Korteweg–de Vries equation.</description><subject>Catalytic combustion</subject><subject>Exact sciences and technology</subject><subject>Flame propagation</subject><subject>Grid refinement</subject><subject>Korteweg–de Vries equation</subject><subject>Mathematics</subject><subject>Moving grid</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1v1DAURS0EEkPbH8DOG9glPDuO7YjVUJUPaVA3ZVvL2M_Uo8QJtqeIf0-iqcQOsXrS1bn3SYeQ1wxaBky-O7bOTi0HEC3jLXTwjOyYVkPDlNLPyQ46pRoQXL0kr0o5AoAcmNiR-z39ur877D_QOC0jTpiqrXFOdA70tPyKydMQU6xIfQwBMyaHhdo1tt4uNT4i_ZGjLzQmWh-QTlgfZr-1x5iwXJIXwY4Fr57uBfn28ebu-nNzuP305Xp_aFynh9owJ7lkgkvBBie1Dh6EBK7sYPUgOiaVYNoLhYFL7PvO69D1nsN3GySKwXUX5O15d8nzzxOWaqZYHI6jTTifiuFa8l4N3X-Afa-F2EB2Bl2eS8kYzJLjZPNvw8Bsys3RrMrNptwwblbla-fN07gtzo4h2-Ri-VtUAIrzbfv9mcNVyWPEbIqLm1kfM7pq_Bz_8eUPnN6UiQ</recordid><startdate>20051115</startdate><enddate>20051115</enddate><creator>Wouwer, A. Vande</creator><creator>Saucez, P.</creator><creator>Schiesser, W.E.</creator><creator>Thompson, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20051115</creationdate><title>A MATLAB implementation of upwind finite differences and adaptive grids in the method of lines</title><author>Wouwer, A. Vande ; Saucez, P. ; Schiesser, W.E. ; Thompson, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-1c6261426419c688fd046027a9a8943167418d47ef26e553d8f35d20baf6e49c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Catalytic combustion</topic><topic>Exact sciences and technology</topic><topic>Flame propagation</topic><topic>Grid refinement</topic><topic>Korteweg–de Vries equation</topic><topic>Mathematics</topic><topic>Moving grid</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wouwer, A. Vande</creatorcontrib><creatorcontrib>Saucez, P.</creatorcontrib><creatorcontrib>Schiesser, W.E.</creatorcontrib><creatorcontrib>Thompson, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wouwer, A. Vande</au><au>Saucez, P.</au><au>Schiesser, W.E.</au><au>Thompson, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A MATLAB implementation of upwind finite differences and adaptive grids in the method of lines</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2005-11-15</date><risdate>2005</risdate><volume>183</volume><issue>2</issue><spage>245</spage><epage>258</epage><pages>245-258</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>In this paper, we report on the development of a MATLAB library for the solution of partial differential equation systems following the method of lines. In particular, we focus attention on upwind finite difference schemes and grid adaptivity, i.e., grid movement or grid refinement. Several algorithms are presented and their performance is demonstrated with illustrative examples including a fixed-bed reactor with periodic flow reversal, a model of flame propagation, and the Korteweg–de Vries equation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2004.12.030</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2005-11, Vol.183 (2), p.245-258 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_28625793 |
source | ScienceDirect Journals (5 years ago - present); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Catalytic combustion Exact sciences and technology Flame propagation Grid refinement Korteweg–de Vries equation Mathematics Moving grid Numerical analysis Numerical analysis. Scientific computation Partial differential equations Partial differential equations, initial value problems and time-dependant initial-boundary value problems Sciences and techniques of general use |
title | A MATLAB implementation of upwind finite differences and adaptive grids in the method of lines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20MATLAB%20implementation%20of%20upwind%20finite%20differences%20and%20adaptive%20grids%20in%20the%20method%20of%20lines&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Wouwer,%20A.%20Vande&rft.date=2005-11-15&rft.volume=183&rft.issue=2&rft.spage=245&rft.epage=258&rft.pages=245-258&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2004.12.030&rft_dat=%3Cproquest_cross%3E28558443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28558443&rft_id=info:pmid/&rft_els_id=S0377042705000634&rfr_iscdi=true |