A MATLAB implementation of upwind finite differences and adaptive grids in the method of lines

In this paper, we report on the development of a MATLAB library for the solution of partial differential equation systems following the method of lines. In particular, we focus attention on upwind finite difference schemes and grid adaptivity, i.e., grid movement or grid refinement. Several algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2005-11, Vol.183 (2), p.245-258
Hauptverfasser: Wouwer, A. Vande, Saucez, P., Schiesser, W.E., Thompson, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue 2
container_start_page 245
container_title Journal of computational and applied mathematics
container_volume 183
creator Wouwer, A. Vande
Saucez, P.
Schiesser, W.E.
Thompson, S.
description In this paper, we report on the development of a MATLAB library for the solution of partial differential equation systems following the method of lines. In particular, we focus attention on upwind finite difference schemes and grid adaptivity, i.e., grid movement or grid refinement. Several algorithms are presented and their performance is demonstrated with illustrative examples including a fixed-bed reactor with periodic flow reversal, a model of flame propagation, and the Korteweg–de Vries equation.
doi_str_mv 10.1016/j.cam.2004.12.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28625793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042705000634</els_id><sourcerecordid>28558443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-1c6261426419c688fd046027a9a8943167418d47ef26e553d8f35d20baf6e49c3</originalsourceid><addsrcrecordid>eNqNkE1v1DAURS0EEkPbH8DOG9glPDuO7YjVUJUPaVA3ZVvL2M_Uo8QJtqeIf0-iqcQOsXrS1bn3SYeQ1wxaBky-O7bOTi0HEC3jLXTwjOyYVkPDlNLPyQ46pRoQXL0kr0o5AoAcmNiR-z39ur877D_QOC0jTpiqrXFOdA70tPyKydMQU6xIfQwBMyaHhdo1tt4uNT4i_ZGjLzQmWh-QTlgfZr-1x5iwXJIXwY4Fr57uBfn28ebu-nNzuP305Xp_aFynh9owJ7lkgkvBBie1Dh6EBK7sYPUgOiaVYNoLhYFL7PvO69D1nsN3GySKwXUX5O15d8nzzxOWaqZYHI6jTTifiuFa8l4N3X-Afa-F2EB2Bl2eS8kYzJLjZPNvw8Bsys3RrMrNptwwblbla-fN07gtzo4h2-Ri-VtUAIrzbfv9mcNVyWPEbIqLm1kfM7pq_Bz_8eUPnN6UiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28558443</pqid></control><display><type>article</type><title>A MATLAB implementation of upwind finite differences and adaptive grids in the method of lines</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wouwer, A. Vande ; Saucez, P. ; Schiesser, W.E. ; Thompson, S.</creator><creatorcontrib>Wouwer, A. Vande ; Saucez, P. ; Schiesser, W.E. ; Thompson, S.</creatorcontrib><description>In this paper, we report on the development of a MATLAB library for the solution of partial differential equation systems following the method of lines. In particular, we focus attention on upwind finite difference schemes and grid adaptivity, i.e., grid movement or grid refinement. Several algorithms are presented and their performance is demonstrated with illustrative examples including a fixed-bed reactor with periodic flow reversal, a model of flame propagation, and the Korteweg–de Vries equation.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2004.12.030</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catalytic combustion ; Exact sciences and technology ; Flame propagation ; Grid refinement ; Korteweg–de Vries equation ; Mathematics ; Moving grid ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use</subject><ispartof>Journal of computational and applied mathematics, 2005-11, Vol.183 (2), p.245-258</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-1c6261426419c688fd046027a9a8943167418d47ef26e553d8f35d20baf6e49c3</citedby><cites>FETCH-LOGICAL-c389t-1c6261426419c688fd046027a9a8943167418d47ef26e553d8f35d20baf6e49c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042705000634$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17007223$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wouwer, A. Vande</creatorcontrib><creatorcontrib>Saucez, P.</creatorcontrib><creatorcontrib>Schiesser, W.E.</creatorcontrib><creatorcontrib>Thompson, S.</creatorcontrib><title>A MATLAB implementation of upwind finite differences and adaptive grids in the method of lines</title><title>Journal of computational and applied mathematics</title><description>In this paper, we report on the development of a MATLAB library for the solution of partial differential equation systems following the method of lines. In particular, we focus attention on upwind finite difference schemes and grid adaptivity, i.e., grid movement or grid refinement. Several algorithms are presented and their performance is demonstrated with illustrative examples including a fixed-bed reactor with periodic flow reversal, a model of flame propagation, and the Korteweg–de Vries equation.</description><subject>Catalytic combustion</subject><subject>Exact sciences and technology</subject><subject>Flame propagation</subject><subject>Grid refinement</subject><subject>Korteweg–de Vries equation</subject><subject>Mathematics</subject><subject>Moving grid</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1v1DAURS0EEkPbH8DOG9glPDuO7YjVUJUPaVA3ZVvL2M_Uo8QJtqeIf0-iqcQOsXrS1bn3SYeQ1wxaBky-O7bOTi0HEC3jLXTwjOyYVkPDlNLPyQ46pRoQXL0kr0o5AoAcmNiR-z39ur877D_QOC0jTpiqrXFOdA70tPyKydMQU6xIfQwBMyaHhdo1tt4uNT4i_ZGjLzQmWh-QTlgfZr-1x5iwXJIXwY4Fr57uBfn28ebu-nNzuP305Xp_aFynh9owJ7lkgkvBBie1Dh6EBK7sYPUgOiaVYNoLhYFL7PvO69D1nsN3GySKwXUX5O15d8nzzxOWaqZYHI6jTTifiuFa8l4N3X-Afa-F2EB2Bl2eS8kYzJLjZPNvw8Bsys3RrMrNptwwblbla-fN07gtzo4h2-Ri-VtUAIrzbfv9mcNVyWPEbIqLm1kfM7pq_Bz_8eUPnN6UiQ</recordid><startdate>20051115</startdate><enddate>20051115</enddate><creator>Wouwer, A. Vande</creator><creator>Saucez, P.</creator><creator>Schiesser, W.E.</creator><creator>Thompson, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20051115</creationdate><title>A MATLAB implementation of upwind finite differences and adaptive grids in the method of lines</title><author>Wouwer, A. Vande ; Saucez, P. ; Schiesser, W.E. ; Thompson, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-1c6261426419c688fd046027a9a8943167418d47ef26e553d8f35d20baf6e49c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Catalytic combustion</topic><topic>Exact sciences and technology</topic><topic>Flame propagation</topic><topic>Grid refinement</topic><topic>Korteweg–de Vries equation</topic><topic>Mathematics</topic><topic>Moving grid</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wouwer, A. Vande</creatorcontrib><creatorcontrib>Saucez, P.</creatorcontrib><creatorcontrib>Schiesser, W.E.</creatorcontrib><creatorcontrib>Thompson, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wouwer, A. Vande</au><au>Saucez, P.</au><au>Schiesser, W.E.</au><au>Thompson, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A MATLAB implementation of upwind finite differences and adaptive grids in the method of lines</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2005-11-15</date><risdate>2005</risdate><volume>183</volume><issue>2</issue><spage>245</spage><epage>258</epage><pages>245-258</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>In this paper, we report on the development of a MATLAB library for the solution of partial differential equation systems following the method of lines. In particular, we focus attention on upwind finite difference schemes and grid adaptivity, i.e., grid movement or grid refinement. Several algorithms are presented and their performance is demonstrated with illustrative examples including a fixed-bed reactor with periodic flow reversal, a model of flame propagation, and the Korteweg–de Vries equation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2004.12.030</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2005-11, Vol.183 (2), p.245-258
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_28625793
source ScienceDirect Journals (5 years ago - present); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Catalytic combustion
Exact sciences and technology
Flame propagation
Grid refinement
Korteweg–de Vries equation
Mathematics
Moving grid
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Sciences and techniques of general use
title A MATLAB implementation of upwind finite differences and adaptive grids in the method of lines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20MATLAB%20implementation%20of%20upwind%20finite%20differences%20and%20adaptive%20grids%20in%20the%20method%20of%20lines&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Wouwer,%20A.%20Vande&rft.date=2005-11-15&rft.volume=183&rft.issue=2&rft.spage=245&rft.epage=258&rft.pages=245-258&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2004.12.030&rft_dat=%3Cproquest_cross%3E28558443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28558443&rft_id=info:pmid/&rft_els_id=S0377042705000634&rfr_iscdi=true