Some relations among RKHS norms, Fredholm equations, and innovations representations
We first show how reproducing kernel Hilbert space (RKHS) norms can be determined for a large class of covariance functions by methods based on the solution of a Riccati differential equation or a Wiener-Hopf integral equation. Efficient numerical algorithms for such equations have been extensively...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 1972-05, Vol.18 (3), p.341-348 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 348 |
---|---|
container_issue | 3 |
container_start_page | 341 |
container_title | IEEE transactions on information theory |
container_volume | 18 |
creator | Kailath, T. Geesey, R. Weinert, H. |
description | We first show how reproducing kernel Hilbert space (RKHS) norms can be determined for a large class of covariance functions by methods based on the solution of a Riccati differential equation or a Wiener-Hopf integral equation. Efficient numerical algorithms for such equations have been extensively studied, especially in the control literature. The innovations representations enter in that it is they that suggest the form of the RKHS norms. From the RKHS norms, we show how recursive solutions can be obtained for certain Fredholm equations of the first kind that are widely used in certain approaches to detection theory. Our approach specifies a unique solution: moreover, the algorithms used are well suited to the treatment of increasing observation intervals. |
doi_str_mv | 10.1109/TIT.1972.1054827 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28624562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1054827</ieee_id><sourcerecordid>28624562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-6795773dacc212299eb9d6006dd02c053601ecd6b9c456109a065fb5cf5b0aa73</originalsourceid><addsrcrecordid>eNpNkMFLwzAUh4MoOKd3wUtOnuxMsiZpjjKcGw4EV88hTV610iZb0gn-93Z0B0-PH-_7HrwfQreUzCgl6rFclzOqJJtRwvOCyTM0oZzLTAmen6MJIbTIVJ4Xl-gqpe8h5pyyCSq3oQMcoTV9E3zCpgv-E7-_rrbYh9ilB7yM4L5C22HYH0boARvvcON9-DlZEXYREvh-zNfoojZtgpvTnKKP5XO5WGWbt5f14mmTWaZYnwmpuJRzZ6xllDGloFJOECKcI8wSPheEgnWiUjbnYnjSEMHrituaV8QYOZ-i-_HuLob9AVKvuyZZaFvjIRySZoVgg8kGkIygjSGlCLXexaYz8VdToo_16aE-faxPn-oblLtRaQDgHz5u_wD7qGw4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28624562</pqid></control><display><type>article</type><title>Some relations among RKHS norms, Fredholm equations, and innovations representations</title><source>IEEE Electronic Library (IEL)</source><creator>Kailath, T. ; Geesey, R. ; Weinert, H.</creator><creatorcontrib>Kailath, T. ; Geesey, R. ; Weinert, H.</creatorcontrib><description>We first show how reproducing kernel Hilbert space (RKHS) norms can be determined for a large class of covariance functions by methods based on the solution of a Riccati differential equation or a Wiener-Hopf integral equation. Efficient numerical algorithms for such equations have been extensively studied, especially in the control literature. The innovations representations enter in that it is they that suggest the form of the RKHS norms. From the RKHS norms, we show how recursive solutions can be obtained for certain Fredholm equations of the first kind that are widely used in certain approaches to detection theory. Our approach specifies a unique solution: moreover, the algorithms used are well suited to the treatment of increasing observation intervals.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.1972.1054827</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>IEEE transactions on information theory, 1972-05, Vol.18 (3), p.341-348</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-6795773dacc212299eb9d6006dd02c053601ecd6b9c456109a065fb5cf5b0aa73</citedby><cites>FETCH-LOGICAL-c292t-6795773dacc212299eb9d6006dd02c053601ecd6b9c456109a065fb5cf5b0aa73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1054827$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1054827$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kailath, T.</creatorcontrib><creatorcontrib>Geesey, R.</creatorcontrib><creatorcontrib>Weinert, H.</creatorcontrib><title>Some relations among RKHS norms, Fredholm equations, and innovations representations</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We first show how reproducing kernel Hilbert space (RKHS) norms can be determined for a large class of covariance functions by methods based on the solution of a Riccati differential equation or a Wiener-Hopf integral equation. Efficient numerical algorithms for such equations have been extensively studied, especially in the control literature. The innovations representations enter in that it is they that suggest the form of the RKHS norms. From the RKHS norms, we show how recursive solutions can be obtained for certain Fredholm equations of the first kind that are widely used in certain approaches to detection theory. Our approach specifies a unique solution: moreover, the algorithms used are well suited to the treatment of increasing observation intervals.</description><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><recordid>eNpNkMFLwzAUh4MoOKd3wUtOnuxMsiZpjjKcGw4EV88hTV610iZb0gn-93Z0B0-PH-_7HrwfQreUzCgl6rFclzOqJJtRwvOCyTM0oZzLTAmen6MJIbTIVJ4Xl-gqpe8h5pyyCSq3oQMcoTV9E3zCpgv-E7-_rrbYh9ilB7yM4L5C22HYH0boARvvcON9-DlZEXYREvh-zNfoojZtgpvTnKKP5XO5WGWbt5f14mmTWaZYnwmpuJRzZ6xllDGloFJOECKcI8wSPheEgnWiUjbnYnjSEMHrituaV8QYOZ-i-_HuLob9AVKvuyZZaFvjIRySZoVgg8kGkIygjSGlCLXexaYz8VdToo_16aE-faxPn-oblLtRaQDgHz5u_wD7qGw4</recordid><startdate>19720501</startdate><enddate>19720501</enddate><creator>Kailath, T.</creator><creator>Geesey, R.</creator><creator>Weinert, H.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19720501</creationdate><title>Some relations among RKHS norms, Fredholm equations, and innovations representations</title><author>Kailath, T. ; Geesey, R. ; Weinert, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-6795773dacc212299eb9d6006dd02c053601ecd6b9c456109a065fb5cf5b0aa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kailath, T.</creatorcontrib><creatorcontrib>Geesey, R.</creatorcontrib><creatorcontrib>Weinert, H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kailath, T.</au><au>Geesey, R.</au><au>Weinert, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some relations among RKHS norms, Fredholm equations, and innovations representations</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1972-05-01</date><risdate>1972</risdate><volume>18</volume><issue>3</issue><spage>341</spage><epage>348</epage><pages>341-348</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We first show how reproducing kernel Hilbert space (RKHS) norms can be determined for a large class of covariance functions by methods based on the solution of a Riccati differential equation or a Wiener-Hopf integral equation. Efficient numerical algorithms for such equations have been extensively studied, especially in the control literature. The innovations representations enter in that it is they that suggest the form of the RKHS norms. From the RKHS norms, we show how recursive solutions can be obtained for certain Fredholm equations of the first kind that are widely used in certain approaches to detection theory. Our approach specifies a unique solution: moreover, the algorithms used are well suited to the treatment of increasing observation intervals.</abstract><pub>IEEE</pub><doi>10.1109/TIT.1972.1054827</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 1972-05, Vol.18 (3), p.341-348 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_miscellaneous_28624562 |
source | IEEE Electronic Library (IEL) |
title | Some relations among RKHS norms, Fredholm equations, and innovations representations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20relations%20among%20RKHS%20norms,%20Fredholm%20equations,%20and%20innovations%20representations&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Kailath,%20T.&rft.date=1972-05-01&rft.volume=18&rft.issue=3&rft.spage=341&rft.epage=348&rft.pages=341-348&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.1972.1054827&rft_dat=%3Cproquest_RIE%3E28624562%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28624562&rft_id=info:pmid/&rft_ieee_id=1054827&rfr_iscdi=true |