Some relations among RKHS norms, Fredholm equations, and innovations representations

We first show how reproducing kernel Hilbert space (RKHS) norms can be determined for a large class of covariance functions by methods based on the solution of a Riccati differential equation or a Wiener-Hopf integral equation. Efficient numerical algorithms for such equations have been extensively...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1972-05, Vol.18 (3), p.341-348
Hauptverfasser: Kailath, T., Geesey, R., Weinert, H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 348
container_issue 3
container_start_page 341
container_title IEEE transactions on information theory
container_volume 18
creator Kailath, T.
Geesey, R.
Weinert, H.
description We first show how reproducing kernel Hilbert space (RKHS) norms can be determined for a large class of covariance functions by methods based on the solution of a Riccati differential equation or a Wiener-Hopf integral equation. Efficient numerical algorithms for such equations have been extensively studied, especially in the control literature. The innovations representations enter in that it is they that suggest the form of the RKHS norms. From the RKHS norms, we show how recursive solutions can be obtained for certain Fredholm equations of the first kind that are widely used in certain approaches to detection theory. Our approach specifies a unique solution: moreover, the algorithms used are well suited to the treatment of increasing observation intervals.
doi_str_mv 10.1109/TIT.1972.1054827
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28624562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1054827</ieee_id><sourcerecordid>28624562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-6795773dacc212299eb9d6006dd02c053601ecd6b9c456109a065fb5cf5b0aa73</originalsourceid><addsrcrecordid>eNpNkMFLwzAUh4MoOKd3wUtOnuxMsiZpjjKcGw4EV88hTV610iZb0gn-93Z0B0-PH-_7HrwfQreUzCgl6rFclzOqJJtRwvOCyTM0oZzLTAmen6MJIbTIVJ4Xl-gqpe8h5pyyCSq3oQMcoTV9E3zCpgv-E7-_rrbYh9ilB7yM4L5C22HYH0boARvvcON9-DlZEXYREvh-zNfoojZtgpvTnKKP5XO5WGWbt5f14mmTWaZYnwmpuJRzZ6xllDGloFJOECKcI8wSPheEgnWiUjbnYnjSEMHrituaV8QYOZ-i-_HuLob9AVKvuyZZaFvjIRySZoVgg8kGkIygjSGlCLXexaYz8VdToo_16aE-faxPn-oblLtRaQDgHz5u_wD7qGw4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28624562</pqid></control><display><type>article</type><title>Some relations among RKHS norms, Fredholm equations, and innovations representations</title><source>IEEE Electronic Library (IEL)</source><creator>Kailath, T. ; Geesey, R. ; Weinert, H.</creator><creatorcontrib>Kailath, T. ; Geesey, R. ; Weinert, H.</creatorcontrib><description>We first show how reproducing kernel Hilbert space (RKHS) norms can be determined for a large class of covariance functions by methods based on the solution of a Riccati differential equation or a Wiener-Hopf integral equation. Efficient numerical algorithms for such equations have been extensively studied, especially in the control literature. The innovations representations enter in that it is they that suggest the form of the RKHS norms. From the RKHS norms, we show how recursive solutions can be obtained for certain Fredholm equations of the first kind that are widely used in certain approaches to detection theory. Our approach specifies a unique solution: moreover, the algorithms used are well suited to the treatment of increasing observation intervals.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.1972.1054827</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>IEEE transactions on information theory, 1972-05, Vol.18 (3), p.341-348</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-6795773dacc212299eb9d6006dd02c053601ecd6b9c456109a065fb5cf5b0aa73</citedby><cites>FETCH-LOGICAL-c292t-6795773dacc212299eb9d6006dd02c053601ecd6b9c456109a065fb5cf5b0aa73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1054827$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1054827$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kailath, T.</creatorcontrib><creatorcontrib>Geesey, R.</creatorcontrib><creatorcontrib>Weinert, H.</creatorcontrib><title>Some relations among RKHS norms, Fredholm equations, and innovations representations</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We first show how reproducing kernel Hilbert space (RKHS) norms can be determined for a large class of covariance functions by methods based on the solution of a Riccati differential equation or a Wiener-Hopf integral equation. Efficient numerical algorithms for such equations have been extensively studied, especially in the control literature. The innovations representations enter in that it is they that suggest the form of the RKHS norms. From the RKHS norms, we show how recursive solutions can be obtained for certain Fredholm equations of the first kind that are widely used in certain approaches to detection theory. Our approach specifies a unique solution: moreover, the algorithms used are well suited to the treatment of increasing observation intervals.</description><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><recordid>eNpNkMFLwzAUh4MoOKd3wUtOnuxMsiZpjjKcGw4EV88hTV610iZb0gn-93Z0B0-PH-_7HrwfQreUzCgl6rFclzOqJJtRwvOCyTM0oZzLTAmen6MJIbTIVJ4Xl-gqpe8h5pyyCSq3oQMcoTV9E3zCpgv-E7-_rrbYh9ilB7yM4L5C22HYH0boARvvcON9-DlZEXYREvh-zNfoojZtgpvTnKKP5XO5WGWbt5f14mmTWaZYnwmpuJRzZ6xllDGloFJOECKcI8wSPheEgnWiUjbnYnjSEMHrituaV8QYOZ-i-_HuLob9AVKvuyZZaFvjIRySZoVgg8kGkIygjSGlCLXexaYz8VdToo_16aE-faxPn-oblLtRaQDgHz5u_wD7qGw4</recordid><startdate>19720501</startdate><enddate>19720501</enddate><creator>Kailath, T.</creator><creator>Geesey, R.</creator><creator>Weinert, H.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19720501</creationdate><title>Some relations among RKHS norms, Fredholm equations, and innovations representations</title><author>Kailath, T. ; Geesey, R. ; Weinert, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-6795773dacc212299eb9d6006dd02c053601ecd6b9c456109a065fb5cf5b0aa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kailath, T.</creatorcontrib><creatorcontrib>Geesey, R.</creatorcontrib><creatorcontrib>Weinert, H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kailath, T.</au><au>Geesey, R.</au><au>Weinert, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some relations among RKHS norms, Fredholm equations, and innovations representations</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1972-05-01</date><risdate>1972</risdate><volume>18</volume><issue>3</issue><spage>341</spage><epage>348</epage><pages>341-348</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We first show how reproducing kernel Hilbert space (RKHS) norms can be determined for a large class of covariance functions by methods based on the solution of a Riccati differential equation or a Wiener-Hopf integral equation. Efficient numerical algorithms for such equations have been extensively studied, especially in the control literature. The innovations representations enter in that it is they that suggest the form of the RKHS norms. From the RKHS norms, we show how recursive solutions can be obtained for certain Fredholm equations of the first kind that are widely used in certain approaches to detection theory. Our approach specifies a unique solution: moreover, the algorithms used are well suited to the treatment of increasing observation intervals.</abstract><pub>IEEE</pub><doi>10.1109/TIT.1972.1054827</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1972-05, Vol.18 (3), p.341-348
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_28624562
source IEEE Electronic Library (IEL)
title Some relations among RKHS norms, Fredholm equations, and innovations representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20relations%20among%20RKHS%20norms,%20Fredholm%20equations,%20and%20innovations%20representations&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Kailath,%20T.&rft.date=1972-05-01&rft.volume=18&rft.issue=3&rft.spage=341&rft.epage=348&rft.pages=341-348&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.1972.1054827&rft_dat=%3Cproquest_RIE%3E28624562%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28624562&rft_id=info:pmid/&rft_ieee_id=1054827&rfr_iscdi=true