Semantic indexing of soccer audio-visual sequences: a multimodal approach based on controlled Markov chains

Content characterization of sport videos is a subject of great interest to researchers working on the analysis of multimedia documents. In this paper, we propose a semantic indexing algorithm which uses both audio and visual information for salient event detection in soccer. The video signal is proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2004-05, Vol.14 (5), p.634-643
Hauptverfasser: Leonardi, R., Migliorati, P., Prandini, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 5
container_start_page 634
container_title IEEE transactions on circuits and systems for video technology
container_volume 14
creator Leonardi, R.
Migliorati, P.
Prandini, M.
description Content characterization of sport videos is a subject of great interest to researchers working on the analysis of multimedia documents. In this paper, we propose a semantic indexing algorithm which uses both audio and visual information for salient event detection in soccer. The video signal is processed first by extracting low-level visual descriptors directly from an MPEG-2 bit stream. It is assumed that any instance of an event of interest typically affects two consecutive shots and is characterized by a different temporal evolution of the visual descriptors in the two shots. This motivates the introduction of a controlled Markov chain to describe such evolution during an event of interest, with the control input modeling the occurrence of a shot transition. After adequately training different controlled Markov chain models, a list of video segments can be extracted to represent a specific event of interest using the maximum likelihood criterion. To reduce the presence of false alarms, low-level audio descriptors are processed to order the candidate video segments in the list so that those associated to the event of interest are likely to be found in the very first positions. We focus in particular on goal detection, which represents a key event in a soccer game, using camera motion information as a visual cue and the "loudness" as an audio descriptor. The experimental results show the effectiveness of the proposed multimodal approach.
doi_str_mv 10.1109/TCSVT.2004.826751
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28624263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1294955</ieee_id><sourcerecordid>2584805531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-d63435845fa71410681845c27b218edb5ad347a3a034a9caa3e504de3632f9023</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhSMEEqX0ByA2FgtY5eLxKw47dMVLKuqit2ytuc6Euk3si51U9N_jcpGQWLCah74zOqPTNC-AbwB4_3a3vfy22wjO1cYK02l41JyA1rYVguvHtecaWitAP22elXLDOSirupPm9pJmjEvwLMSBfob4naWRleQ9ZYbrEFJ7F8qKEyv0Y6XoqbxjyOZ1WsKchrrHwyEn9Ndsj4UGliLzKS45TVOdvmK-TXfMX2OI5XnzZMSp0Nmfetpcffyw235uzy8-fdm-P2-9MmJpByOV1FbpETtQwI2FOnjR7QVYGvYaB6k6lMilwt4jStJcDSSNFGPPhTxt3hzvVmPVc1ncHIqnacJIaS3O9gZ6CdZU8vV_SWGNUMLICr76B7xJa471C9cLEMIq0BWCI-RzKiXT6A45zJjvHXD3kJL7nZJ7SMkdU6qal0dNIKK_vOhVr7X8BV5OjhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921228415</pqid></control><display><type>article</type><title>Semantic indexing of soccer audio-visual sequences: a multimodal approach based on controlled Markov chains</title><source>IEEE Electronic Library (IEL)</source><creator>Leonardi, R. ; Migliorati, P. ; Prandini, M.</creator><creatorcontrib>Leonardi, R. ; Migliorati, P. ; Prandini, M.</creatorcontrib><description>Content characterization of sport videos is a subject of great interest to researchers working on the analysis of multimedia documents. In this paper, we propose a semantic indexing algorithm which uses both audio and visual information for salient event detection in soccer. The video signal is processed first by extracting low-level visual descriptors directly from an MPEG-2 bit stream. It is assumed that any instance of an event of interest typically affects two consecutive shots and is characterized by a different temporal evolution of the visual descriptors in the two shots. This motivates the introduction of a controlled Markov chain to describe such evolution during an event of interest, with the control input modeling the occurrence of a shot transition. After adequately training different controlled Markov chain models, a list of video segments can be extracted to represent a specific event of interest using the maximum likelihood criterion. To reduce the presence of false alarms, low-level audio descriptors are processed to order the candidate video segments in the list so that those associated to the event of interest are likely to be found in the very first positions. We focus in particular on goal detection, which represents a key event in a soccer game, using camera motion information as a visual cue and the "loudness" as an audio descriptor. The experimental results show the effectiveness of the proposed multimodal approach.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2004.826751</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data mining ; Event detection ; Games ; Indexing ; Lists ; Markov analysis ; Markov chains ; Mathematical models ; Maximum likelihood detection ; Motion detection ; Semantics ; Shot ; Signal processing ; Soccer ; Streaming media ; Studies ; Text analysis ; Videos ; Visual</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2004-05, Vol.14 (5), p.634-643</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-d63435845fa71410681845c27b218edb5ad347a3a034a9caa3e504de3632f9023</citedby><cites>FETCH-LOGICAL-c462t-d63435845fa71410681845c27b218edb5ad347a3a034a9caa3e504de3632f9023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1294955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1294955$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leonardi, R.</creatorcontrib><creatorcontrib>Migliorati, P.</creatorcontrib><creatorcontrib>Prandini, M.</creatorcontrib><title>Semantic indexing of soccer audio-visual sequences: a multimodal approach based on controlled Markov chains</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Content characterization of sport videos is a subject of great interest to researchers working on the analysis of multimedia documents. In this paper, we propose a semantic indexing algorithm which uses both audio and visual information for salient event detection in soccer. The video signal is processed first by extracting low-level visual descriptors directly from an MPEG-2 bit stream. It is assumed that any instance of an event of interest typically affects two consecutive shots and is characterized by a different temporal evolution of the visual descriptors in the two shots. This motivates the introduction of a controlled Markov chain to describe such evolution during an event of interest, with the control input modeling the occurrence of a shot transition. After adequately training different controlled Markov chain models, a list of video segments can be extracted to represent a specific event of interest using the maximum likelihood criterion. To reduce the presence of false alarms, low-level audio descriptors are processed to order the candidate video segments in the list so that those associated to the event of interest are likely to be found in the very first positions. We focus in particular on goal detection, which represents a key event in a soccer game, using camera motion information as a visual cue and the "loudness" as an audio descriptor. The experimental results show the effectiveness of the proposed multimodal approach.</description><subject>Data mining</subject><subject>Event detection</subject><subject>Games</subject><subject>Indexing</subject><subject>Lists</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Maximum likelihood detection</subject><subject>Motion detection</subject><subject>Semantics</subject><subject>Shot</subject><subject>Signal processing</subject><subject>Soccer</subject><subject>Streaming media</subject><subject>Studies</subject><subject>Text analysis</subject><subject>Videos</subject><subject>Visual</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtv1TAQhSMEEqX0ByA2FgtY5eLxKw47dMVLKuqit2ytuc6Euk3si51U9N_jcpGQWLCah74zOqPTNC-AbwB4_3a3vfy22wjO1cYK02l41JyA1rYVguvHtecaWitAP22elXLDOSirupPm9pJmjEvwLMSBfob4naWRleQ9ZYbrEFJ7F8qKEyv0Y6XoqbxjyOZ1WsKchrrHwyEn9Ndsj4UGliLzKS45TVOdvmK-TXfMX2OI5XnzZMSp0Nmfetpcffyw235uzy8-fdm-P2-9MmJpByOV1FbpETtQwI2FOnjR7QVYGvYaB6k6lMilwt4jStJcDSSNFGPPhTxt3hzvVmPVc1ncHIqnacJIaS3O9gZ6CdZU8vV_SWGNUMLICr76B7xJa471C9cLEMIq0BWCI-RzKiXT6A45zJjvHXD3kJL7nZJ7SMkdU6qal0dNIKK_vOhVr7X8BV5OjhA</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Leonardi, R.</creator><creator>Migliorati, P.</creator><creator>Prandini, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040501</creationdate><title>Semantic indexing of soccer audio-visual sequences: a multimodal approach based on controlled Markov chains</title><author>Leonardi, R. ; Migliorati, P. ; Prandini, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-d63435845fa71410681845c27b218edb5ad347a3a034a9caa3e504de3632f9023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Data mining</topic><topic>Event detection</topic><topic>Games</topic><topic>Indexing</topic><topic>Lists</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Maximum likelihood detection</topic><topic>Motion detection</topic><topic>Semantics</topic><topic>Shot</topic><topic>Signal processing</topic><topic>Soccer</topic><topic>Streaming media</topic><topic>Studies</topic><topic>Text analysis</topic><topic>Videos</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leonardi, R.</creatorcontrib><creatorcontrib>Migliorati, P.</creatorcontrib><creatorcontrib>Prandini, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leonardi, R.</au><au>Migliorati, P.</au><au>Prandini, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic indexing of soccer audio-visual sequences: a multimodal approach based on controlled Markov chains</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2004-05-01</date><risdate>2004</risdate><volume>14</volume><issue>5</issue><spage>634</spage><epage>643</epage><pages>634-643</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Content characterization of sport videos is a subject of great interest to researchers working on the analysis of multimedia documents. In this paper, we propose a semantic indexing algorithm which uses both audio and visual information for salient event detection in soccer. The video signal is processed first by extracting low-level visual descriptors directly from an MPEG-2 bit stream. It is assumed that any instance of an event of interest typically affects two consecutive shots and is characterized by a different temporal evolution of the visual descriptors in the two shots. This motivates the introduction of a controlled Markov chain to describe such evolution during an event of interest, with the control input modeling the occurrence of a shot transition. After adequately training different controlled Markov chain models, a list of video segments can be extracted to represent a specific event of interest using the maximum likelihood criterion. To reduce the presence of false alarms, low-level audio descriptors are processed to order the candidate video segments in the list so that those associated to the event of interest are likely to be found in the very first positions. We focus in particular on goal detection, which represents a key event in a soccer game, using camera motion information as a visual cue and the "loudness" as an audio descriptor. The experimental results show the effectiveness of the proposed multimodal approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2004.826751</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2004-05, Vol.14 (5), p.634-643
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_miscellaneous_28624263
source IEEE Electronic Library (IEL)
subjects Data mining
Event detection
Games
Indexing
Lists
Markov analysis
Markov chains
Mathematical models
Maximum likelihood detection
Motion detection
Semantics
Shot
Signal processing
Soccer
Streaming media
Studies
Text analysis
Videos
Visual
title Semantic indexing of soccer audio-visual sequences: a multimodal approach based on controlled Markov chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20indexing%20of%20soccer%20audio-visual%20sequences:%20a%20multimodal%20approach%20based%20on%20controlled%20Markov%20chains&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Leonardi,%20R.&rft.date=2004-05-01&rft.volume=14&rft.issue=5&rft.spage=634&rft.epage=643&rft.pages=634-643&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2004.826751&rft_dat=%3Cproquest_RIE%3E2584805531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921228415&rft_id=info:pmid/&rft_ieee_id=1294955&rfr_iscdi=true