Reactivity studies with gold-supported molybdenum nanoparticles
The reconstructed (22 × √3)-Au(1 1 1) surface was used as a template and inert support for depositing Mo nanoparticles for reactivity studies of desulfurization and the formation of MoS x nanoparticles. Nanoparticles of Mo were prepared on the Au(1 1 1) substrate by two methods: physical vapor depos...
Gespeichert in:
Veröffentlicht in: | Surface science 2005-01, Vol.574 (2), p.244-258 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 258 |
---|---|
container_issue | 2 |
container_start_page | 244 |
container_title | Surface science |
container_volume | 574 |
creator | Potapenko, Denis V. Horn, Jillian M. Beuhler, Robert J. Song, Zhen White, Michael G. |
description | The reconstructed (22
×
√3)-Au(1
1
1) surface was used as a template and inert support for depositing Mo nanoparticles for reactivity studies of desulfurization and the formation of MoS
x
nanoparticles. Nanoparticles of Mo were prepared on the Au(1
1
1) substrate by two methods: physical vapor deposition (PVD) of Mo and UV-assisted chemical vapor deposition (UV-CVD) through a molybdenum hexacarbonyl precursor. STM studies have shown that the Mo nanoparticles are thermodynamically unstable on the Au(1
1
1) surface, and that gold encapsulates Mo at temperatures above 300
K. Reactivity studies using Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) show that bare Mo nanoparticles are very reactive and can cause complete dissociation of hydrogen sulfide, methyl mercaptan, and thiophene. The presence of gold atoms on the Mo nanoparticles modifies their reactivity. In the case of H
2S and CH
3SH, the overall activity for desufurization is unaffected by gold encapsulation; however, the selectivity to form methane from CH
3SH increased from 20% on bare Mo particles to 60% on gold-covered Mo particles. In contrast, gold-encapsulated Mo nanoparticles are relatively inert towards dissociation of thiophene. We believe that the interaction of R–SH compounds with Au-encapsulated Mo nanoparticles proceeds through intermediacy of surface gold thiolates. |
doi_str_mv | 10.1016/j.susc.2004.10.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28622816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602804013901</els_id><sourcerecordid>28622816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-174b244796164ccd3fc61c410a5efa8a5ffa6b7e1002bb228b7745cc4fee2ad23</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A5560VtrkqZpFwSRxS9YEETPIZ1ONUu_zKQr-9_bZRe8OZeBx--9YR5jl4Inggt9s05oJEgk52oSEp5mR2wminwRyzwrjtmM83QRay6LU3ZGtObTqEU2Y3dvaCG4jQvbiMJYOaTox4Wv6LNvqpjGYeh9wCpq-2ZbVtiNbdTZrh-sDw4apHN2UtuG8OKw5-zj8eF9-RyvXp9elverGFItQixyVUql8oUWWgFUaQ1agBLcZljbwmZ1bXWZo-BclqWURZnnKgNQNaK0lUzn7HqfO_j-e0QKpnUE2DS2w34kIws9uYSeQLkHwfdEHmszeNdavzWCm11XZm12XZldVztt6moyXR3SLYFtam87cPTn1IqnkouJu91zOL26cegNgcMOsHIeIZiqd_-d-QVThoD1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28622816</pqid></control><display><type>article</type><title>Reactivity studies with gold-supported molybdenum nanoparticles</title><source>Elsevier ScienceDirect Journals</source><creator>Potapenko, Denis V. ; Horn, Jillian M. ; Beuhler, Robert J. ; Song, Zhen ; White, Michael G.</creator><creatorcontrib>Potapenko, Denis V. ; Horn, Jillian M. ; Beuhler, Robert J. ; Song, Zhen ; White, Michael G.</creatorcontrib><description>The reconstructed (22
×
√3)-Au(1
1
1) surface was used as a template and inert support for depositing Mo nanoparticles for reactivity studies of desulfurization and the formation of MoS
x
nanoparticles. Nanoparticles of Mo were prepared on the Au(1
1
1) substrate by two methods: physical vapor deposition (PVD) of Mo and UV-assisted chemical vapor deposition (UV-CVD) through a molybdenum hexacarbonyl precursor. STM studies have shown that the Mo nanoparticles are thermodynamically unstable on the Au(1
1
1) surface, and that gold encapsulates Mo at temperatures above 300
K. Reactivity studies using Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) show that bare Mo nanoparticles are very reactive and can cause complete dissociation of hydrogen sulfide, methyl mercaptan, and thiophene. The presence of gold atoms on the Mo nanoparticles modifies their reactivity. In the case of H
2S and CH
3SH, the overall activity for desufurization is unaffected by gold encapsulation; however, the selectivity to form methane from CH
3SH increased from 20% on bare Mo particles to 60% on gold-covered Mo particles. In contrast, gold-encapsulated Mo nanoparticles are relatively inert towards dissociation of thiophene. We believe that the interaction of R–SH compounds with Au-encapsulated Mo nanoparticles proceeds through intermediacy of surface gold thiolates.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2004.10.035</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Chemical vapor deposition ; Clusters ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Molybdenum ; Physics ; Scanning tunneling microscopy ; Sulfides ; Surface structure, morphology, roughness, and topography ; Thermal desorption spectroscopy</subject><ispartof>Surface science, 2005-01, Vol.574 (2), p.244-258</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-174b244796164ccd3fc61c410a5efa8a5ffa6b7e1002bb228b7745cc4fee2ad23</citedby><cites>FETCH-LOGICAL-c361t-174b244796164ccd3fc61c410a5efa8a5ffa6b7e1002bb228b7745cc4fee2ad23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.susc.2004.10.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16403201$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Potapenko, Denis V.</creatorcontrib><creatorcontrib>Horn, Jillian M.</creatorcontrib><creatorcontrib>Beuhler, Robert J.</creatorcontrib><creatorcontrib>Song, Zhen</creatorcontrib><creatorcontrib>White, Michael G.</creatorcontrib><title>Reactivity studies with gold-supported molybdenum nanoparticles</title><title>Surface science</title><description>The reconstructed (22
×
√3)-Au(1
1
1) surface was used as a template and inert support for depositing Mo nanoparticles for reactivity studies of desulfurization and the formation of MoS
x
nanoparticles. Nanoparticles of Mo were prepared on the Au(1
1
1) substrate by two methods: physical vapor deposition (PVD) of Mo and UV-assisted chemical vapor deposition (UV-CVD) through a molybdenum hexacarbonyl precursor. STM studies have shown that the Mo nanoparticles are thermodynamically unstable on the Au(1
1
1) surface, and that gold encapsulates Mo at temperatures above 300
K. Reactivity studies using Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) show that bare Mo nanoparticles are very reactive and can cause complete dissociation of hydrogen sulfide, methyl mercaptan, and thiophene. The presence of gold atoms on the Mo nanoparticles modifies their reactivity. In the case of H
2S and CH
3SH, the overall activity for desufurization is unaffected by gold encapsulation; however, the selectivity to form methane from CH
3SH increased from 20% on bare Mo particles to 60% on gold-covered Mo particles. In contrast, gold-encapsulated Mo nanoparticles are relatively inert towards dissociation of thiophene. We believe that the interaction of R–SH compounds with Au-encapsulated Mo nanoparticles proceeds through intermediacy of surface gold thiolates.</description><subject>Chemical vapor deposition</subject><subject>Clusters</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Molybdenum</subject><subject>Physics</subject><subject>Scanning tunneling microscopy</subject><subject>Sulfides</subject><subject>Surface structure, morphology, roughness, and topography</subject><subject>Thermal desorption spectroscopy</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-A5560VtrkqZpFwSRxS9YEETPIZ1ONUu_zKQr-9_bZRe8OZeBx--9YR5jl4Inggt9s05oJEgk52oSEp5mR2wminwRyzwrjtmM83QRay6LU3ZGtObTqEU2Y3dvaCG4jQvbiMJYOaTox4Wv6LNvqpjGYeh9wCpq-2ZbVtiNbdTZrh-sDw4apHN2UtuG8OKw5-zj8eF9-RyvXp9elverGFItQixyVUql8oUWWgFUaQ1agBLcZljbwmZ1bXWZo-BclqWURZnnKgNQNaK0lUzn7HqfO_j-e0QKpnUE2DS2w34kIws9uYSeQLkHwfdEHmszeNdavzWCm11XZm12XZldVztt6moyXR3SLYFtam87cPTn1IqnkouJu91zOL26cegNgcMOsHIeIZiqd_-d-QVThoD1</recordid><startdate>20050110</startdate><enddate>20050110</enddate><creator>Potapenko, Denis V.</creator><creator>Horn, Jillian M.</creator><creator>Beuhler, Robert J.</creator><creator>Song, Zhen</creator><creator>White, Michael G.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20050110</creationdate><title>Reactivity studies with gold-supported molybdenum nanoparticles</title><author>Potapenko, Denis V. ; Horn, Jillian M. ; Beuhler, Robert J. ; Song, Zhen ; White, Michael G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-174b244796164ccd3fc61c410a5efa8a5ffa6b7e1002bb228b7745cc4fee2ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chemical vapor deposition</topic><topic>Clusters</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Molybdenum</topic><topic>Physics</topic><topic>Scanning tunneling microscopy</topic><topic>Sulfides</topic><topic>Surface structure, morphology, roughness, and topography</topic><topic>Thermal desorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potapenko, Denis V.</creatorcontrib><creatorcontrib>Horn, Jillian M.</creatorcontrib><creatorcontrib>Beuhler, Robert J.</creatorcontrib><creatorcontrib>Song, Zhen</creatorcontrib><creatorcontrib>White, Michael G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potapenko, Denis V.</au><au>Horn, Jillian M.</au><au>Beuhler, Robert J.</au><au>Song, Zhen</au><au>White, Michael G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactivity studies with gold-supported molybdenum nanoparticles</atitle><jtitle>Surface science</jtitle><date>2005-01-10</date><risdate>2005</risdate><volume>574</volume><issue>2</issue><spage>244</spage><epage>258</epage><pages>244-258</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>The reconstructed (22
×
√3)-Au(1
1
1) surface was used as a template and inert support for depositing Mo nanoparticles for reactivity studies of desulfurization and the formation of MoS
x
nanoparticles. Nanoparticles of Mo were prepared on the Au(1
1
1) substrate by two methods: physical vapor deposition (PVD) of Mo and UV-assisted chemical vapor deposition (UV-CVD) through a molybdenum hexacarbonyl precursor. STM studies have shown that the Mo nanoparticles are thermodynamically unstable on the Au(1
1
1) surface, and that gold encapsulates Mo at temperatures above 300
K. Reactivity studies using Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) show that bare Mo nanoparticles are very reactive and can cause complete dissociation of hydrogen sulfide, methyl mercaptan, and thiophene. The presence of gold atoms on the Mo nanoparticles modifies their reactivity. In the case of H
2S and CH
3SH, the overall activity for desufurization is unaffected by gold encapsulation; however, the selectivity to form methane from CH
3SH increased from 20% on bare Mo particles to 60% on gold-covered Mo particles. In contrast, gold-encapsulated Mo nanoparticles are relatively inert towards dissociation of thiophene. We believe that the interaction of R–SH compounds with Au-encapsulated Mo nanoparticles proceeds through intermediacy of surface gold thiolates.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2004.10.035</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-6028 |
ispartof | Surface science, 2005-01, Vol.574 (2), p.244-258 |
issn | 0039-6028 1879-2758 |
language | eng |
recordid | cdi_proquest_miscellaneous_28622816 |
source | Elsevier ScienceDirect Journals |
subjects | Chemical vapor deposition Clusters Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Exact sciences and technology Molybdenum Physics Scanning tunneling microscopy Sulfides Surface structure, morphology, roughness, and topography Thermal desorption spectroscopy |
title | Reactivity studies with gold-supported molybdenum nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactivity%20studies%20with%20gold-supported%20molybdenum%20nanoparticles&rft.jtitle=Surface%20science&rft.au=Potapenko,%20Denis%20V.&rft.date=2005-01-10&rft.volume=574&rft.issue=2&rft.spage=244&rft.epage=258&rft.pages=244-258&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/j.susc.2004.10.035&rft_dat=%3Cproquest_cross%3E28622816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28622816&rft_id=info:pmid/&rft_els_id=S0039602804013901&rfr_iscdi=true |