Reactivity studies with gold-supported molybdenum nanoparticles

The reconstructed (22 × √3)-Au(1 1 1) surface was used as a template and inert support for depositing Mo nanoparticles for reactivity studies of desulfurization and the formation of MoS x nanoparticles. Nanoparticles of Mo were prepared on the Au(1 1 1) substrate by two methods: physical vapor depos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface science 2005-01, Vol.574 (2), p.244-258
Hauptverfasser: Potapenko, Denis V., Horn, Jillian M., Beuhler, Robert J., Song, Zhen, White, Michael G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue 2
container_start_page 244
container_title Surface science
container_volume 574
creator Potapenko, Denis V.
Horn, Jillian M.
Beuhler, Robert J.
Song, Zhen
White, Michael G.
description The reconstructed (22 × √3)-Au(1 1 1) surface was used as a template and inert support for depositing Mo nanoparticles for reactivity studies of desulfurization and the formation of MoS x nanoparticles. Nanoparticles of Mo were prepared on the Au(1 1 1) substrate by two methods: physical vapor deposition (PVD) of Mo and UV-assisted chemical vapor deposition (UV-CVD) through a molybdenum hexacarbonyl precursor. STM studies have shown that the Mo nanoparticles are thermodynamically unstable on the Au(1 1 1) surface, and that gold encapsulates Mo at temperatures above 300 K. Reactivity studies using Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) show that bare Mo nanoparticles are very reactive and can cause complete dissociation of hydrogen sulfide, methyl mercaptan, and thiophene. The presence of gold atoms on the Mo nanoparticles modifies their reactivity. In the case of H 2S and CH 3SH, the overall activity for desufurization is unaffected by gold encapsulation; however, the selectivity to form methane from CH 3SH increased from 20% on bare Mo particles to 60% on gold-covered Mo particles. In contrast, gold-encapsulated Mo nanoparticles are relatively inert towards dissociation of thiophene. We believe that the interaction of R–SH compounds with Au-encapsulated Mo nanoparticles proceeds through intermediacy of surface gold thiolates.
doi_str_mv 10.1016/j.susc.2004.10.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28622816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602804013901</els_id><sourcerecordid>28622816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-174b244796164ccd3fc61c410a5efa8a5ffa6b7e1002bb228b7745cc4fee2ad23</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A5560VtrkqZpFwSRxS9YEETPIZ1ONUu_zKQr-9_bZRe8OZeBx--9YR5jl4Inggt9s05oJEgk52oSEp5mR2wminwRyzwrjtmM83QRay6LU3ZGtObTqEU2Y3dvaCG4jQvbiMJYOaTox4Wv6LNvqpjGYeh9wCpq-2ZbVtiNbdTZrh-sDw4apHN2UtuG8OKw5-zj8eF9-RyvXp9elverGFItQixyVUql8oUWWgFUaQ1agBLcZljbwmZ1bXWZo-BclqWURZnnKgNQNaK0lUzn7HqfO_j-e0QKpnUE2DS2w34kIws9uYSeQLkHwfdEHmszeNdavzWCm11XZm12XZldVztt6moyXR3SLYFtam87cPTn1IqnkouJu91zOL26cegNgcMOsHIeIZiqd_-d-QVThoD1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28622816</pqid></control><display><type>article</type><title>Reactivity studies with gold-supported molybdenum nanoparticles</title><source>Elsevier ScienceDirect Journals</source><creator>Potapenko, Denis V. ; Horn, Jillian M. ; Beuhler, Robert J. ; Song, Zhen ; White, Michael G.</creator><creatorcontrib>Potapenko, Denis V. ; Horn, Jillian M. ; Beuhler, Robert J. ; Song, Zhen ; White, Michael G.</creatorcontrib><description>The reconstructed (22 × √3)-Au(1 1 1) surface was used as a template and inert support for depositing Mo nanoparticles for reactivity studies of desulfurization and the formation of MoS x nanoparticles. Nanoparticles of Mo were prepared on the Au(1 1 1) substrate by two methods: physical vapor deposition (PVD) of Mo and UV-assisted chemical vapor deposition (UV-CVD) through a molybdenum hexacarbonyl precursor. STM studies have shown that the Mo nanoparticles are thermodynamically unstable on the Au(1 1 1) surface, and that gold encapsulates Mo at temperatures above 300 K. Reactivity studies using Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) show that bare Mo nanoparticles are very reactive and can cause complete dissociation of hydrogen sulfide, methyl mercaptan, and thiophene. The presence of gold atoms on the Mo nanoparticles modifies their reactivity. In the case of H 2S and CH 3SH, the overall activity for desufurization is unaffected by gold encapsulation; however, the selectivity to form methane from CH 3SH increased from 20% on bare Mo particles to 60% on gold-covered Mo particles. In contrast, gold-encapsulated Mo nanoparticles are relatively inert towards dissociation of thiophene. We believe that the interaction of R–SH compounds with Au-encapsulated Mo nanoparticles proceeds through intermediacy of surface gold thiolates.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2004.10.035</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Chemical vapor deposition ; Clusters ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Molybdenum ; Physics ; Scanning tunneling microscopy ; Sulfides ; Surface structure, morphology, roughness, and topography ; Thermal desorption spectroscopy</subject><ispartof>Surface science, 2005-01, Vol.574 (2), p.244-258</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-174b244796164ccd3fc61c410a5efa8a5ffa6b7e1002bb228b7745cc4fee2ad23</citedby><cites>FETCH-LOGICAL-c361t-174b244796164ccd3fc61c410a5efa8a5ffa6b7e1002bb228b7745cc4fee2ad23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.susc.2004.10.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16403201$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Potapenko, Denis V.</creatorcontrib><creatorcontrib>Horn, Jillian M.</creatorcontrib><creatorcontrib>Beuhler, Robert J.</creatorcontrib><creatorcontrib>Song, Zhen</creatorcontrib><creatorcontrib>White, Michael G.</creatorcontrib><title>Reactivity studies with gold-supported molybdenum nanoparticles</title><title>Surface science</title><description>The reconstructed (22 × √3)-Au(1 1 1) surface was used as a template and inert support for depositing Mo nanoparticles for reactivity studies of desulfurization and the formation of MoS x nanoparticles. Nanoparticles of Mo were prepared on the Au(1 1 1) substrate by two methods: physical vapor deposition (PVD) of Mo and UV-assisted chemical vapor deposition (UV-CVD) through a molybdenum hexacarbonyl precursor. STM studies have shown that the Mo nanoparticles are thermodynamically unstable on the Au(1 1 1) surface, and that gold encapsulates Mo at temperatures above 300 K. Reactivity studies using Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) show that bare Mo nanoparticles are very reactive and can cause complete dissociation of hydrogen sulfide, methyl mercaptan, and thiophene. The presence of gold atoms on the Mo nanoparticles modifies their reactivity. In the case of H 2S and CH 3SH, the overall activity for desufurization is unaffected by gold encapsulation; however, the selectivity to form methane from CH 3SH increased from 20% on bare Mo particles to 60% on gold-covered Mo particles. In contrast, gold-encapsulated Mo nanoparticles are relatively inert towards dissociation of thiophene. We believe that the interaction of R–SH compounds with Au-encapsulated Mo nanoparticles proceeds through intermediacy of surface gold thiolates.</description><subject>Chemical vapor deposition</subject><subject>Clusters</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Molybdenum</subject><subject>Physics</subject><subject>Scanning tunneling microscopy</subject><subject>Sulfides</subject><subject>Surface structure, morphology, roughness, and topography</subject><subject>Thermal desorption spectroscopy</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-A5560VtrkqZpFwSRxS9YEETPIZ1ONUu_zKQr-9_bZRe8OZeBx--9YR5jl4Inggt9s05oJEgk52oSEp5mR2wminwRyzwrjtmM83QRay6LU3ZGtObTqEU2Y3dvaCG4jQvbiMJYOaTox4Wv6LNvqpjGYeh9wCpq-2ZbVtiNbdTZrh-sDw4apHN2UtuG8OKw5-zj8eF9-RyvXp9elverGFItQixyVUql8oUWWgFUaQ1agBLcZljbwmZ1bXWZo-BclqWURZnnKgNQNaK0lUzn7HqfO_j-e0QKpnUE2DS2w34kIws9uYSeQLkHwfdEHmszeNdavzWCm11XZm12XZldVztt6moyXR3SLYFtam87cPTn1IqnkouJu91zOL26cegNgcMOsHIeIZiqd_-d-QVThoD1</recordid><startdate>20050110</startdate><enddate>20050110</enddate><creator>Potapenko, Denis V.</creator><creator>Horn, Jillian M.</creator><creator>Beuhler, Robert J.</creator><creator>Song, Zhen</creator><creator>White, Michael G.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20050110</creationdate><title>Reactivity studies with gold-supported molybdenum nanoparticles</title><author>Potapenko, Denis V. ; Horn, Jillian M. ; Beuhler, Robert J. ; Song, Zhen ; White, Michael G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-174b244796164ccd3fc61c410a5efa8a5ffa6b7e1002bb228b7745cc4fee2ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chemical vapor deposition</topic><topic>Clusters</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Molybdenum</topic><topic>Physics</topic><topic>Scanning tunneling microscopy</topic><topic>Sulfides</topic><topic>Surface structure, morphology, roughness, and topography</topic><topic>Thermal desorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potapenko, Denis V.</creatorcontrib><creatorcontrib>Horn, Jillian M.</creatorcontrib><creatorcontrib>Beuhler, Robert J.</creatorcontrib><creatorcontrib>Song, Zhen</creatorcontrib><creatorcontrib>White, Michael G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potapenko, Denis V.</au><au>Horn, Jillian M.</au><au>Beuhler, Robert J.</au><au>Song, Zhen</au><au>White, Michael G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactivity studies with gold-supported molybdenum nanoparticles</atitle><jtitle>Surface science</jtitle><date>2005-01-10</date><risdate>2005</risdate><volume>574</volume><issue>2</issue><spage>244</spage><epage>258</epage><pages>244-258</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>The reconstructed (22 × √3)-Au(1 1 1) surface was used as a template and inert support for depositing Mo nanoparticles for reactivity studies of desulfurization and the formation of MoS x nanoparticles. Nanoparticles of Mo were prepared on the Au(1 1 1) substrate by two methods: physical vapor deposition (PVD) of Mo and UV-assisted chemical vapor deposition (UV-CVD) through a molybdenum hexacarbonyl precursor. STM studies have shown that the Mo nanoparticles are thermodynamically unstable on the Au(1 1 1) surface, and that gold encapsulates Mo at temperatures above 300 K. Reactivity studies using Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) show that bare Mo nanoparticles are very reactive and can cause complete dissociation of hydrogen sulfide, methyl mercaptan, and thiophene. The presence of gold atoms on the Mo nanoparticles modifies their reactivity. In the case of H 2S and CH 3SH, the overall activity for desufurization is unaffected by gold encapsulation; however, the selectivity to form methane from CH 3SH increased from 20% on bare Mo particles to 60% on gold-covered Mo particles. In contrast, gold-encapsulated Mo nanoparticles are relatively inert towards dissociation of thiophene. We believe that the interaction of R–SH compounds with Au-encapsulated Mo nanoparticles proceeds through intermediacy of surface gold thiolates.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2004.10.035</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 2005-01, Vol.574 (2), p.244-258
issn 0039-6028
1879-2758
language eng
recordid cdi_proquest_miscellaneous_28622816
source Elsevier ScienceDirect Journals
subjects Chemical vapor deposition
Clusters
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Molybdenum
Physics
Scanning tunneling microscopy
Sulfides
Surface structure, morphology, roughness, and topography
Thermal desorption spectroscopy
title Reactivity studies with gold-supported molybdenum nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactivity%20studies%20with%20gold-supported%20molybdenum%20nanoparticles&rft.jtitle=Surface%20science&rft.au=Potapenko,%20Denis%20V.&rft.date=2005-01-10&rft.volume=574&rft.issue=2&rft.spage=244&rft.epage=258&rft.pages=244-258&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/j.susc.2004.10.035&rft_dat=%3Cproquest_cross%3E28622816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28622816&rft_id=info:pmid/&rft_els_id=S0039602804013901&rfr_iscdi=true