Rapid Construction of Caffeic Acid/p‑Phenylenediamine Antifouling Hydrophilic Coating on a PVDF Membrane for Emulsion Separation
The current methods of constructing modification strategies for hydrophilic membranes are time-consuming, complex in operation, and poor in universality, which limit their application on membranes. In this work, inspired by the adhesion properties and versatility of caffeic acid (CA) and p-phenylene...
Gespeichert in:
Veröffentlicht in: | Langmuir 2023-09, Vol.39 (37), p.13197-13211 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The current methods of constructing modification strategies for hydrophilic membranes are time-consuming, complex in operation, and poor in universality, which limit their application on membranes. In this work, inspired by the adhesion properties and versatility of caffeic acid (CA) and p-phenylenediamine (PPDA), a simple, rapid, and universal method was designed for the separation of oil-in-water emulsion by preparing a stable hydrophilic coating separation membrane. The preparation time of the membrane was shortened to 40 min. The developed PVDF–PCA/PPDA membrane showed superhydrophilic and underwater superoleophobic properties. When applied to petroleum ether-in-water emulsion, isooctane-in-water emulsion, and dodecane-in-water emulsion separation, the oil rejection was more than 99.0%. In the circulating separation of 10 g/L soybean oil-in-water emulsion, the oil rejection was more than 99.3%, and the highest flux was 1036 L·m–2·h–1. The prepared PVDF–PCA/PPDA membrane performed well in the separation test of oily wastewater. The proposed strategy is simple and rapid; it may become a universal method for preparing membranes with super strong antifouling properties against viscous oil and accelerate the research progress of membrane separation of oil-in-water emulsions. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.3c01627 |