Multidentate Chelation Achieves Bilateral Passivation toward Efficient and Stable Perovskite Solar Cells with Minimized Energy Losses

Defects in the electron transport layer (ETL), perovskite, and buried interface will result in considerable nonradiative recombination. Here, a bottom-up bilateral modification strategy is proposed by incorporating arsenazo III (AA), a chromogenic agent for metal ions, to regulate SnO2 nanoparticles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2023-09, Vol.23 (18), p.8610-8619
Hauptverfasser: Yang, Haichao, Li, Ru, Gong, Shaokuan, Wang, Huaxin, Qaid, Saif M. H., Zhou, Qian, Cai, Wensi, Chen, Xihan, Chen, Jiangzhao, Zang, Zhigang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8619
container_issue 18
container_start_page 8610
container_title Nano letters
container_volume 23
creator Yang, Haichao
Li, Ru
Gong, Shaokuan
Wang, Huaxin
Qaid, Saif M. H.
Zhou, Qian
Cai, Wensi
Chen, Xihan
Chen, Jiangzhao
Zang, Zhigang
description Defects in the electron transport layer (ETL), perovskite, and buried interface will result in considerable nonradiative recombination. Here, a bottom-up bilateral modification strategy is proposed by incorporating arsenazo III (AA), a chromogenic agent for metal ions, to regulate SnO2 nanoparticles. AA can complex with uncoordinated Sn4+/Pb2+ in the form of multidentate chelation. Furthermore, by forming a hydrogen bond with formamidinium (FA), AA can suppress FA+ defects and regulate crystallization. Multiple chemical bonds between AA and functional layers are established, synergistically preventing the agglomeration of SnO2 nanoparticles, enhancing carrier transport dynamics, passivating bilateral defects, releasing tensile stress, and promoting the crystallization of perovskite. Ultimately, the AA-optimized power conversion efficiency (PCE) of the methylammonium-free (MA-free) devices (Rb0.02(FA0.95Cs0.05)0.98PbI2.91Br0.03Cl0.06) is boosted from 20.88% to 23.17% with a high open-circuit voltage (V OC) exceeding 1.18 V and ultralow energy losses down to 0.37 eV. In addition, the optimized devices also exhibit superior stability.
doi_str_mv 10.1021/acs.nanolett.3c02444
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2861644943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861644943</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-bbbcceded3182d1e6b42f9d567b13525d89db119060ce17537eee5957a02f3873</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRVcIJCDwBxQuaRL83EcJES8piEiBeuW1Z4mDYwfbCYKe_8YogZJqRjNzru7cojgjeEQwJRdSxZGTzltIacQUppzzveKICIaHZdPQ_b--5ofFcYwLjHHDBD4qvh7WNhkNLskEaDwHK5PxDl2quYENRHRl8gSCtGgqYzSb7Tr5dxk0uu57o0yGkXQazZLsLKApBL-JrybrzbyVAY3B2ojeTZqjB-PM0nxCRh2Elw808TFCPCkOemkjnO7qoHi-uX4a3w0nj7f348vJUDIq0rDrOqVAg2akpppA2XHaN1qUVUeYoELXje4IaXCJFZBKsAoARCMqiWnP6ooNivOt7ir4tzXE1C5NVNmedODXsaV1SUrOG87yKd-eqpAtBujbVTBLGT5agtuf1NucevubertLPWN4i_1sF34dXP7nf-Qbcb-M1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861644943</pqid></control><display><type>article</type><title>Multidentate Chelation Achieves Bilateral Passivation toward Efficient and Stable Perovskite Solar Cells with Minimized Energy Losses</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Yang, Haichao ; Li, Ru ; Gong, Shaokuan ; Wang, Huaxin ; Qaid, Saif M. H. ; Zhou, Qian ; Cai, Wensi ; Chen, Xihan ; Chen, Jiangzhao ; Zang, Zhigang</creator><creatorcontrib>Yang, Haichao ; Li, Ru ; Gong, Shaokuan ; Wang, Huaxin ; Qaid, Saif M. H. ; Zhou, Qian ; Cai, Wensi ; Chen, Xihan ; Chen, Jiangzhao ; Zang, Zhigang</creatorcontrib><description>Defects in the electron transport layer (ETL), perovskite, and buried interface will result in considerable nonradiative recombination. Here, a bottom-up bilateral modification strategy is proposed by incorporating arsenazo III (AA), a chromogenic agent for metal ions, to regulate SnO2 nanoparticles. AA can complex with uncoordinated Sn4+/Pb2+ in the form of multidentate chelation. Furthermore, by forming a hydrogen bond with formamidinium (FA), AA can suppress FA+ defects and regulate crystallization. Multiple chemical bonds between AA and functional layers are established, synergistically preventing the agglomeration of SnO2 nanoparticles, enhancing carrier transport dynamics, passivating bilateral defects, releasing tensile stress, and promoting the crystallization of perovskite. Ultimately, the AA-optimized power conversion efficiency (PCE) of the methylammonium-free (MA-free) devices (Rb0.02(FA0.95Cs0.05)0.98PbI2.91Br0.03Cl0.06) is boosted from 20.88% to 23.17% with a high open-circuit voltage (V OC) exceeding 1.18 V and ultralow energy losses down to 0.37 eV. In addition, the optimized devices also exhibit superior stability.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.3c02444</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2023-09, Vol.23 (18), p.8610-8619</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-bbbcceded3182d1e6b42f9d567b13525d89db119060ce17537eee5957a02f3873</citedby><cites>FETCH-LOGICAL-a325t-bbbcceded3182d1e6b42f9d567b13525d89db119060ce17537eee5957a02f3873</cites><orcidid>0000-0001-8958-8960 ; 0000-0001-7822-5486 ; 0000-0001-7907-2549 ; 0000-0003-1632-503X ; 0000-0002-9066-7217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.3c02444$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c02444$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Yang, Haichao</creatorcontrib><creatorcontrib>Li, Ru</creatorcontrib><creatorcontrib>Gong, Shaokuan</creatorcontrib><creatorcontrib>Wang, Huaxin</creatorcontrib><creatorcontrib>Qaid, Saif M. H.</creatorcontrib><creatorcontrib>Zhou, Qian</creatorcontrib><creatorcontrib>Cai, Wensi</creatorcontrib><creatorcontrib>Chen, Xihan</creatorcontrib><creatorcontrib>Chen, Jiangzhao</creatorcontrib><creatorcontrib>Zang, Zhigang</creatorcontrib><title>Multidentate Chelation Achieves Bilateral Passivation toward Efficient and Stable Perovskite Solar Cells with Minimized Energy Losses</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Defects in the electron transport layer (ETL), perovskite, and buried interface will result in considerable nonradiative recombination. Here, a bottom-up bilateral modification strategy is proposed by incorporating arsenazo III (AA), a chromogenic agent for metal ions, to regulate SnO2 nanoparticles. AA can complex with uncoordinated Sn4+/Pb2+ in the form of multidentate chelation. Furthermore, by forming a hydrogen bond with formamidinium (FA), AA can suppress FA+ defects and regulate crystallization. Multiple chemical bonds between AA and functional layers are established, synergistically preventing the agglomeration of SnO2 nanoparticles, enhancing carrier transport dynamics, passivating bilateral defects, releasing tensile stress, and promoting the crystallization of perovskite. Ultimately, the AA-optimized power conversion efficiency (PCE) of the methylammonium-free (MA-free) devices (Rb0.02(FA0.95Cs0.05)0.98PbI2.91Br0.03Cl0.06) is boosted from 20.88% to 23.17% with a high open-circuit voltage (V OC) exceeding 1.18 V and ultralow energy losses down to 0.37 eV. In addition, the optimized devices also exhibit superior stability.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOAzEQRVcIJCDwBxQuaRL83EcJES8piEiBeuW1Z4mDYwfbCYKe_8YogZJqRjNzru7cojgjeEQwJRdSxZGTzltIacQUppzzveKICIaHZdPQ_b--5ofFcYwLjHHDBD4qvh7WNhkNLskEaDwHK5PxDl2quYENRHRl8gSCtGgqYzSb7Tr5dxk0uu57o0yGkXQazZLsLKApBL-JrybrzbyVAY3B2ojeTZqjB-PM0nxCRh2Elw808TFCPCkOemkjnO7qoHi-uX4a3w0nj7f348vJUDIq0rDrOqVAg2akpppA2XHaN1qUVUeYoELXje4IaXCJFZBKsAoARCMqiWnP6ooNivOt7ir4tzXE1C5NVNmedODXsaV1SUrOG87yKd-eqpAtBujbVTBLGT5agtuf1NucevubertLPWN4i_1sF34dXP7nf-Qbcb-M1A</recordid><startdate>20230927</startdate><enddate>20230927</enddate><creator>Yang, Haichao</creator><creator>Li, Ru</creator><creator>Gong, Shaokuan</creator><creator>Wang, Huaxin</creator><creator>Qaid, Saif M. H.</creator><creator>Zhou, Qian</creator><creator>Cai, Wensi</creator><creator>Chen, Xihan</creator><creator>Chen, Jiangzhao</creator><creator>Zang, Zhigang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8958-8960</orcidid><orcidid>https://orcid.org/0000-0001-7822-5486</orcidid><orcidid>https://orcid.org/0000-0001-7907-2549</orcidid><orcidid>https://orcid.org/0000-0003-1632-503X</orcidid><orcidid>https://orcid.org/0000-0002-9066-7217</orcidid></search><sort><creationdate>20230927</creationdate><title>Multidentate Chelation Achieves Bilateral Passivation toward Efficient and Stable Perovskite Solar Cells with Minimized Energy Losses</title><author>Yang, Haichao ; Li, Ru ; Gong, Shaokuan ; Wang, Huaxin ; Qaid, Saif M. H. ; Zhou, Qian ; Cai, Wensi ; Chen, Xihan ; Chen, Jiangzhao ; Zang, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-bbbcceded3182d1e6b42f9d567b13525d89db119060ce17537eee5957a02f3873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Haichao</creatorcontrib><creatorcontrib>Li, Ru</creatorcontrib><creatorcontrib>Gong, Shaokuan</creatorcontrib><creatorcontrib>Wang, Huaxin</creatorcontrib><creatorcontrib>Qaid, Saif M. H.</creatorcontrib><creatorcontrib>Zhou, Qian</creatorcontrib><creatorcontrib>Cai, Wensi</creatorcontrib><creatorcontrib>Chen, Xihan</creatorcontrib><creatorcontrib>Chen, Jiangzhao</creatorcontrib><creatorcontrib>Zang, Zhigang</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Haichao</au><au>Li, Ru</au><au>Gong, Shaokuan</au><au>Wang, Huaxin</au><au>Qaid, Saif M. H.</au><au>Zhou, Qian</au><au>Cai, Wensi</au><au>Chen, Xihan</au><au>Chen, Jiangzhao</au><au>Zang, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidentate Chelation Achieves Bilateral Passivation toward Efficient and Stable Perovskite Solar Cells with Minimized Energy Losses</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2023-09-27</date><risdate>2023</risdate><volume>23</volume><issue>18</issue><spage>8610</spage><epage>8619</epage><pages>8610-8619</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Defects in the electron transport layer (ETL), perovskite, and buried interface will result in considerable nonradiative recombination. Here, a bottom-up bilateral modification strategy is proposed by incorporating arsenazo III (AA), a chromogenic agent for metal ions, to regulate SnO2 nanoparticles. AA can complex with uncoordinated Sn4+/Pb2+ in the form of multidentate chelation. Furthermore, by forming a hydrogen bond with formamidinium (FA), AA can suppress FA+ defects and regulate crystallization. Multiple chemical bonds between AA and functional layers are established, synergistically preventing the agglomeration of SnO2 nanoparticles, enhancing carrier transport dynamics, passivating bilateral defects, releasing tensile stress, and promoting the crystallization of perovskite. Ultimately, the AA-optimized power conversion efficiency (PCE) of the methylammonium-free (MA-free) devices (Rb0.02(FA0.95Cs0.05)0.98PbI2.91Br0.03Cl0.06) is boosted from 20.88% to 23.17% with a high open-circuit voltage (V OC) exceeding 1.18 V and ultralow energy losses down to 0.37 eV. In addition, the optimized devices also exhibit superior stability.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.3c02444</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8958-8960</orcidid><orcidid>https://orcid.org/0000-0001-7822-5486</orcidid><orcidid>https://orcid.org/0000-0001-7907-2549</orcidid><orcidid>https://orcid.org/0000-0003-1632-503X</orcidid><orcidid>https://orcid.org/0000-0002-9066-7217</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2023-09, Vol.23 (18), p.8610-8619
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2861644943
source ACS Journals: American Chemical Society Web Editions
title Multidentate Chelation Achieves Bilateral Passivation toward Efficient and Stable Perovskite Solar Cells with Minimized Energy Losses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidentate%20Chelation%20Achieves%20Bilateral%20Passivation%20toward%20Efficient%20and%20Stable%20Perovskite%20Solar%20Cells%20with%20Minimized%20Energy%20Losses&rft.jtitle=Nano%20letters&rft.au=Yang,%20Haichao&rft.date=2023-09-27&rft.volume=23&rft.issue=18&rft.spage=8610&rft.epage=8619&rft.pages=8610-8619&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.3c02444&rft_dat=%3Cproquest_cross%3E2861644943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861644943&rft_id=info:pmid/&rfr_iscdi=true