Multidentate Chelation Achieves Bilateral Passivation toward Efficient and Stable Perovskite Solar Cells with Minimized Energy Losses
Defects in the electron transport layer (ETL), perovskite, and buried interface will result in considerable nonradiative recombination. Here, a bottom-up bilateral modification strategy is proposed by incorporating arsenazo III (AA), a chromogenic agent for metal ions, to regulate SnO2 nanoparticles...
Gespeichert in:
Veröffentlicht in: | Nano letters 2023-09, Vol.23 (18), p.8610-8619 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8619 |
---|---|
container_issue | 18 |
container_start_page | 8610 |
container_title | Nano letters |
container_volume | 23 |
creator | Yang, Haichao Li, Ru Gong, Shaokuan Wang, Huaxin Qaid, Saif M. H. Zhou, Qian Cai, Wensi Chen, Xihan Chen, Jiangzhao Zang, Zhigang |
description | Defects in the electron transport layer (ETL), perovskite, and buried interface will result in considerable nonradiative recombination. Here, a bottom-up bilateral modification strategy is proposed by incorporating arsenazo III (AA), a chromogenic agent for metal ions, to regulate SnO2 nanoparticles. AA can complex with uncoordinated Sn4+/Pb2+ in the form of multidentate chelation. Furthermore, by forming a hydrogen bond with formamidinium (FA), AA can suppress FA+ defects and regulate crystallization. Multiple chemical bonds between AA and functional layers are established, synergistically preventing the agglomeration of SnO2 nanoparticles, enhancing carrier transport dynamics, passivating bilateral defects, releasing tensile stress, and promoting the crystallization of perovskite. Ultimately, the AA-optimized power conversion efficiency (PCE) of the methylammonium-free (MA-free) devices (Rb0.02(FA0.95Cs0.05)0.98PbI2.91Br0.03Cl0.06) is boosted from 20.88% to 23.17% with a high open-circuit voltage (V OC) exceeding 1.18 V and ultralow energy losses down to 0.37 eV. In addition, the optimized devices also exhibit superior stability. |
doi_str_mv | 10.1021/acs.nanolett.3c02444 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2861644943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861644943</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-bbbcceded3182d1e6b42f9d567b13525d89db119060ce17537eee5957a02f3873</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRVcIJCDwBxQuaRL83EcJES8piEiBeuW1Z4mDYwfbCYKe_8YogZJqRjNzru7cojgjeEQwJRdSxZGTzltIacQUppzzveKICIaHZdPQ_b--5ofFcYwLjHHDBD4qvh7WNhkNLskEaDwHK5PxDl2quYENRHRl8gSCtGgqYzSb7Tr5dxk0uu57o0yGkXQazZLsLKApBL-JrybrzbyVAY3B2ojeTZqjB-PM0nxCRh2Elw808TFCPCkOemkjnO7qoHi-uX4a3w0nj7f348vJUDIq0rDrOqVAg2akpppA2XHaN1qUVUeYoELXje4IaXCJFZBKsAoARCMqiWnP6ooNivOt7ir4tzXE1C5NVNmedODXsaV1SUrOG87yKd-eqpAtBujbVTBLGT5agtuf1NucevubertLPWN4i_1sF34dXP7nf-Qbcb-M1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861644943</pqid></control><display><type>article</type><title>Multidentate Chelation Achieves Bilateral Passivation toward Efficient and Stable Perovskite Solar Cells with Minimized Energy Losses</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Yang, Haichao ; Li, Ru ; Gong, Shaokuan ; Wang, Huaxin ; Qaid, Saif M. H. ; Zhou, Qian ; Cai, Wensi ; Chen, Xihan ; Chen, Jiangzhao ; Zang, Zhigang</creator><creatorcontrib>Yang, Haichao ; Li, Ru ; Gong, Shaokuan ; Wang, Huaxin ; Qaid, Saif M. H. ; Zhou, Qian ; Cai, Wensi ; Chen, Xihan ; Chen, Jiangzhao ; Zang, Zhigang</creatorcontrib><description>Defects in the electron transport layer (ETL), perovskite, and buried interface will result in considerable nonradiative recombination. Here, a bottom-up bilateral modification strategy is proposed by incorporating arsenazo III (AA), a chromogenic agent for metal ions, to regulate SnO2 nanoparticles. AA can complex with uncoordinated Sn4+/Pb2+ in the form of multidentate chelation. Furthermore, by forming a hydrogen bond with formamidinium (FA), AA can suppress FA+ defects and regulate crystallization. Multiple chemical bonds between AA and functional layers are established, synergistically preventing the agglomeration of SnO2 nanoparticles, enhancing carrier transport dynamics, passivating bilateral defects, releasing tensile stress, and promoting the crystallization of perovskite. Ultimately, the AA-optimized power conversion efficiency (PCE) of the methylammonium-free (MA-free) devices (Rb0.02(FA0.95Cs0.05)0.98PbI2.91Br0.03Cl0.06) is boosted from 20.88% to 23.17% with a high open-circuit voltage (V OC) exceeding 1.18 V and ultralow energy losses down to 0.37 eV. In addition, the optimized devices also exhibit superior stability.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.3c02444</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2023-09, Vol.23 (18), p.8610-8619</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-bbbcceded3182d1e6b42f9d567b13525d89db119060ce17537eee5957a02f3873</citedby><cites>FETCH-LOGICAL-a325t-bbbcceded3182d1e6b42f9d567b13525d89db119060ce17537eee5957a02f3873</cites><orcidid>0000-0001-8958-8960 ; 0000-0001-7822-5486 ; 0000-0001-7907-2549 ; 0000-0003-1632-503X ; 0000-0002-9066-7217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.3c02444$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c02444$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Yang, Haichao</creatorcontrib><creatorcontrib>Li, Ru</creatorcontrib><creatorcontrib>Gong, Shaokuan</creatorcontrib><creatorcontrib>Wang, Huaxin</creatorcontrib><creatorcontrib>Qaid, Saif M. H.</creatorcontrib><creatorcontrib>Zhou, Qian</creatorcontrib><creatorcontrib>Cai, Wensi</creatorcontrib><creatorcontrib>Chen, Xihan</creatorcontrib><creatorcontrib>Chen, Jiangzhao</creatorcontrib><creatorcontrib>Zang, Zhigang</creatorcontrib><title>Multidentate Chelation Achieves Bilateral Passivation toward Efficient and Stable Perovskite Solar Cells with Minimized Energy Losses</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Defects in the electron transport layer (ETL), perovskite, and buried interface will result in considerable nonradiative recombination. Here, a bottom-up bilateral modification strategy is proposed by incorporating arsenazo III (AA), a chromogenic agent for metal ions, to regulate SnO2 nanoparticles. AA can complex with uncoordinated Sn4+/Pb2+ in the form of multidentate chelation. Furthermore, by forming a hydrogen bond with formamidinium (FA), AA can suppress FA+ defects and regulate crystallization. Multiple chemical bonds between AA and functional layers are established, synergistically preventing the agglomeration of SnO2 nanoparticles, enhancing carrier transport dynamics, passivating bilateral defects, releasing tensile stress, and promoting the crystallization of perovskite. Ultimately, the AA-optimized power conversion efficiency (PCE) of the methylammonium-free (MA-free) devices (Rb0.02(FA0.95Cs0.05)0.98PbI2.91Br0.03Cl0.06) is boosted from 20.88% to 23.17% with a high open-circuit voltage (V OC) exceeding 1.18 V and ultralow energy losses down to 0.37 eV. In addition, the optimized devices also exhibit superior stability.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOAzEQRVcIJCDwBxQuaRL83EcJES8piEiBeuW1Z4mDYwfbCYKe_8YogZJqRjNzru7cojgjeEQwJRdSxZGTzltIacQUppzzveKICIaHZdPQ_b--5ofFcYwLjHHDBD4qvh7WNhkNLskEaDwHK5PxDl2quYENRHRl8gSCtGgqYzSb7Tr5dxk0uu57o0yGkXQazZLsLKApBL-JrybrzbyVAY3B2ojeTZqjB-PM0nxCRh2Elw808TFCPCkOemkjnO7qoHi-uX4a3w0nj7f348vJUDIq0rDrOqVAg2akpppA2XHaN1qUVUeYoELXje4IaXCJFZBKsAoARCMqiWnP6ooNivOt7ir4tzXE1C5NVNmedODXsaV1SUrOG87yKd-eqpAtBujbVTBLGT5agtuf1NucevubertLPWN4i_1sF34dXP7nf-Qbcb-M1A</recordid><startdate>20230927</startdate><enddate>20230927</enddate><creator>Yang, Haichao</creator><creator>Li, Ru</creator><creator>Gong, Shaokuan</creator><creator>Wang, Huaxin</creator><creator>Qaid, Saif M. H.</creator><creator>Zhou, Qian</creator><creator>Cai, Wensi</creator><creator>Chen, Xihan</creator><creator>Chen, Jiangzhao</creator><creator>Zang, Zhigang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8958-8960</orcidid><orcidid>https://orcid.org/0000-0001-7822-5486</orcidid><orcidid>https://orcid.org/0000-0001-7907-2549</orcidid><orcidid>https://orcid.org/0000-0003-1632-503X</orcidid><orcidid>https://orcid.org/0000-0002-9066-7217</orcidid></search><sort><creationdate>20230927</creationdate><title>Multidentate Chelation Achieves Bilateral Passivation toward Efficient and Stable Perovskite Solar Cells with Minimized Energy Losses</title><author>Yang, Haichao ; Li, Ru ; Gong, Shaokuan ; Wang, Huaxin ; Qaid, Saif M. H. ; Zhou, Qian ; Cai, Wensi ; Chen, Xihan ; Chen, Jiangzhao ; Zang, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-bbbcceded3182d1e6b42f9d567b13525d89db119060ce17537eee5957a02f3873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Haichao</creatorcontrib><creatorcontrib>Li, Ru</creatorcontrib><creatorcontrib>Gong, Shaokuan</creatorcontrib><creatorcontrib>Wang, Huaxin</creatorcontrib><creatorcontrib>Qaid, Saif M. H.</creatorcontrib><creatorcontrib>Zhou, Qian</creatorcontrib><creatorcontrib>Cai, Wensi</creatorcontrib><creatorcontrib>Chen, Xihan</creatorcontrib><creatorcontrib>Chen, Jiangzhao</creatorcontrib><creatorcontrib>Zang, Zhigang</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Haichao</au><au>Li, Ru</au><au>Gong, Shaokuan</au><au>Wang, Huaxin</au><au>Qaid, Saif M. H.</au><au>Zhou, Qian</au><au>Cai, Wensi</au><au>Chen, Xihan</au><au>Chen, Jiangzhao</au><au>Zang, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidentate Chelation Achieves Bilateral Passivation toward Efficient and Stable Perovskite Solar Cells with Minimized Energy Losses</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2023-09-27</date><risdate>2023</risdate><volume>23</volume><issue>18</issue><spage>8610</spage><epage>8619</epage><pages>8610-8619</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Defects in the electron transport layer (ETL), perovskite, and buried interface will result in considerable nonradiative recombination. Here, a bottom-up bilateral modification strategy is proposed by incorporating arsenazo III (AA), a chromogenic agent for metal ions, to regulate SnO2 nanoparticles. AA can complex with uncoordinated Sn4+/Pb2+ in the form of multidentate chelation. Furthermore, by forming a hydrogen bond with formamidinium (FA), AA can suppress FA+ defects and regulate crystallization. Multiple chemical bonds between AA and functional layers are established, synergistically preventing the agglomeration of SnO2 nanoparticles, enhancing carrier transport dynamics, passivating bilateral defects, releasing tensile stress, and promoting the crystallization of perovskite. Ultimately, the AA-optimized power conversion efficiency (PCE) of the methylammonium-free (MA-free) devices (Rb0.02(FA0.95Cs0.05)0.98PbI2.91Br0.03Cl0.06) is boosted from 20.88% to 23.17% with a high open-circuit voltage (V OC) exceeding 1.18 V and ultralow energy losses down to 0.37 eV. In addition, the optimized devices also exhibit superior stability.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.3c02444</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8958-8960</orcidid><orcidid>https://orcid.org/0000-0001-7822-5486</orcidid><orcidid>https://orcid.org/0000-0001-7907-2549</orcidid><orcidid>https://orcid.org/0000-0003-1632-503X</orcidid><orcidid>https://orcid.org/0000-0002-9066-7217</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2023-09, Vol.23 (18), p.8610-8619 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2861644943 |
source | ACS Journals: American Chemical Society Web Editions |
title | Multidentate Chelation Achieves Bilateral Passivation toward Efficient and Stable Perovskite Solar Cells with Minimized Energy Losses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidentate%20Chelation%20Achieves%20Bilateral%20Passivation%20toward%20Efficient%20and%20Stable%20Perovskite%20Solar%20Cells%20with%20Minimized%20Energy%20Losses&rft.jtitle=Nano%20letters&rft.au=Yang,%20Haichao&rft.date=2023-09-27&rft.volume=23&rft.issue=18&rft.spage=8610&rft.epage=8619&rft.pages=8610-8619&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.3c02444&rft_dat=%3Cproquest_cross%3E2861644943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861644943&rft_id=info:pmid/&rfr_iscdi=true |